Merge branch 'master' of ssh://git.iqser.com:2222/rr/cv-analysis

This commit is contained in:
Isaac Riley 2022-08-02 12:13:02 +02:00
commit edbda58837
7 changed files with 158 additions and 232 deletions

View File

@ -10,7 +10,7 @@ from cv_analysis.utils.filters import (
has_acceptable_format,
is_not_too_large,
)
from cv_analysis.utils.post_processing import remove_included
from cv_analysis.utils.postprocessing import remove_included
from cv_analysis.utils.structures import Rectangle
@ -23,9 +23,11 @@ def make_figure_detection_pipeline(min_area=5000, max_width_to_height_ratio=6):
cnts = detect_large_coherent_structures(image)
cnts = filter_cnts(cnts)
rects = remove_included(map(cv2.boundingRect, cnts))
rectangles = map(Rectangle.from_xywh, rects)
return rectangles
rects = map(cv2.boundingRect, cnts)
rects = map(Rectangle.from_xywh, rects)
rects = remove_included(rects)
return rects
return pipeline

View File

@ -6,7 +6,7 @@ import cv2
import numpy as np
from cv_analysis.utils.structures import Rectangle
from cv_analysis.utils.post_processing import (
from cv_analysis.utils.postprocessing import (
remove_overlapping,
remove_included,
has_no_parent,

View File

@ -7,7 +7,7 @@ import numpy as np
from funcy import lmap
from cv_analysis.layout_parsing import parse_layout
from cv_analysis.utils.post_processing import xywh_to_vecs, xywh_to_vec_rect, adjacent1d
from cv_analysis.utils.postprocessing import remove_isolated # xywh_to_vecs, xywh_to_vec_rect, adjacent1d
from cv_analysis.utils.structures import Rectangle
from cv_analysis.utils.visual_logging import vizlogger
@ -86,29 +86,6 @@ def isolate_vertical_and_horizontal_components(img_bin):
return img_bin_final
def has_table_shape(rects):
assert isinstance(rects, list)
points = list(chain(*map(xywh_to_vecs, rects)))
brect = xywh_to_vec_rect(cv2.boundingRect(np.vstack(points)))
rects = list(map(xywh_to_vec_rect, rects))
def matches_bounding_rect_corner(rect, x, y):
corresp_coords = list(zip(*map(attrgetter(x, y), [brect, rect])))
ret = all(starmap(partial(adjacent1d, tolerance=30), corresp_coords))
return ret
return all(
(
any(matches_bounding_rect_corner(r, "xmin", "ymin") for r in rects),
any(matches_bounding_rect_corner(r, "xmin", "ymax") for r in rects),
any(matches_bounding_rect_corner(r, "xmax", "ymax") for r in rects),
any(matches_bounding_rect_corner(r, "xmax", "ymin") for r in rects),
)
)
def find_table_layout_boxes(image: np.array):
def is_large_enough(box):
(x, y, w, h) = box
@ -117,7 +94,6 @@ def find_table_layout_boxes(image: np.array):
layout_boxes = parse_layout(image)
a = lmap(is_large_enough, layout_boxes)
print(a)
return lmap(is_large_enough, layout_boxes)
@ -127,7 +103,7 @@ def preprocess(image: np.array):
return ~image
def turn_connected_components_into_rects(image):
def turn_connected_components_into_rects(image: np.array):
def is_large_enough(stat):
x1, y1, w, h, area = stat
return area > 2000 and w > 35 and h > 25
@ -149,9 +125,12 @@ def parse_tables(image: np.array, show=False):
"""
image = preprocess(image)
image = isolate_vertical_and_horizontal_components(image)
rects = turn_connected_components_into_rects(image)
return list(map(Rectangle.from_xywh, rects))
#print(rects, "\n\n")
rects = list(map(Rectangle.from_xywh, rects))
#print(rects, "\n\n")
rects = remove_isolated(rects)
#print(rects, "\n\n")
return rects

View File

@ -1,140 +0,0 @@
from collections import namedtuple
from functools import partial
from itertools import starmap, compress
def remove_overlapping(rectangles):
def overlap(a, b):
return compute_intersection(a, b) > 0
def does_not_overlap(rect, rectangles):
return not any(overlap(rect, r2) for r2 in rectangles if not rect == r2)
rectangles = list(map(xywh_to_vec_rect, rectangles))
rectangles = filter(partial(does_not_overlap, rectangles=rectangles), rectangles)
rectangles = map(vec_rect_to_xywh, rectangles)
return rectangles
def remove_included(rectangles):
def included(a, b):
return b.xmin >= a.xmin and b.ymin >= a.ymin and b.xmax <= a.xmax and b.ymax <= a.ymax
def includes(a, b, tol=3):
"""does a include b?"""
return b.xmin + tol >= a.xmin and b.ymin + tol >= a.ymin and b.xmax - tol <= a.xmax and b.ymax - tol <= a.ymax
def is_not_included(rect, rectangles):
return not any(includes(r2, rect) for r2 in rectangles if not rect == r2)
rectangles = list(map(xywh_to_vec_rect, rectangles))
rectangles = filter(partial(is_not_included, rectangles=rectangles), rectangles)
rectangles = map(vec_rect_to_xywh, rectangles)
return rectangles
# tolerance was set too low (1) most lines are 2px wide
def adjacent1d(n, m, tolerance=4):
return abs(n - m) <= tolerance
Rectangle = namedtuple("Rectangle", "xmin ymin xmax ymax")
def adjacent(a, b):
"""Two rects (v1, v2), (w1, w2) are adjacent if either of:
- the x components of v2 and w1 match and the y components of w1 or w2 are in the range of the y components of v1 and v2
- the x components of v1 and w2 match and the y components of w1 or w2 are in the range of the y components of v1 and v2
- the y components of v2 and w1 match and the x components of w1 or w2 are in the range of the x components of v1 and v2
- the y components of v1 and w2 match and the x components of w1 or w2 are in the range of the x components of v1 and v2
"""
def adjacent2d(g, h, i, j, k, l):
# print(adjacent1d(g, h), any(k <= p <= l for p in [i, j]))
return adjacent1d(g, h) and any(k <= p <= l for p in [i, j])
if any(x is None for x in (a, b)):
return False
v1 = a.xmin, a.ymin
v2 = a.xmax, a.ymax
w1 = b.xmin, b.ymin
w2 = b.xmax, b.ymax
return any(
(
adjacent2d(v2[0], w1[0], w1[1], w2[1], v1[1], v2[1]),
adjacent2d(v1[0], w2[0], w1[1], w2[1], v1[1], v2[1]),
adjacent2d(v2[1], w1[1], w1[0], w2[0], v1[0], v2[0]),
adjacent2d(v1[1], w2[1], w1[0], w2[0], v1[0], v2[0]),
)
)
# FIXME: For some reason some isolated rects remain.
def __remove_isolated_unsorted(rectangles):
def is_connected(rect, rectangles):
return any(adjacent(r2, rect) for r2 in rectangles if not rect == r2)
rectangles = list(map(xywh_to_vec_rect, rectangles))
rectangles = filter(partial(is_connected, rectangles=rectangles), rectangles)
rectangles = map(vec_rect_to_xywh, rectangles)
return rectangles
def make_box(x1, y1, x2, y2):
keys = "x1", "y1", "x2", "y2"
return dict(zip(keys, [x1, y1, x2, y2]))
def __remove_isolated_sorted(rectangles):
def is_connected(left, center, right):
# print(left,center,right)
return any(starmap(adjacent, [(left, center), (center, right)]))
rectangles = list(map(xywh_to_vec_rect, rectangles))
lefts = [None, *rectangles[:-1]]
rights = [*rectangles[1:], None]
mask = starmap(is_connected, zip(lefts, rectangles, rights))
rectangles = compress(rectangles, mask)
rectangles = map(vec_rect_to_xywh, rectangles)
return rectangles
def remove_isolated(rectangles, input_sorted=False):
return (__remove_isolated_sorted if input_sorted else __remove_isolated_unsorted)(rectangles)
Rectangle = namedtuple("Rectangle", "xmin ymin xmax ymax")
def compute_intersection(a, b):
dx = min(a.xmax, b.xmax) - max(a.xmin, b.xmin)
dy = min(a.ymax, b.ymax) - max(a.ymin, b.ymin)
return dx * dy if (dx >= 0) and (dy >= 0) else 0
def has_no_parent(hierarchy):
return hierarchy[-1] <= 0
def xywh_to_vec_rect(rect):
v1, v2 = xywh_to_vecs(rect)
return Rectangle(*v1, *v2)
def vecs_to_vec_rect(rect):
v1, v2 = rect
return Rectangle(*v1, *v2)
def xywh_to_vecs(rect):
x1, y1, w, h = rect
x2 = x1 + w
y2 = y1 + h
return (x1, y1), (x2, y2)
def vec_rect_to_xywh(rect):
x, y, x2, y2 = rect
w = x2 - x
h = y2 - y
return x, y, w, h

View File

@ -0,0 +1,50 @@
from collections import namedtuple
from functools import partial
from itertools import starmap, compress
from typing import Iterable
from cv_analysis.utils.structures import Rectangle
def remove_overlapping(rectangles: Iterable[Rectangle]) -> list[Rectangle]:
def overlap(a: Rectangle, rect2: Rectangle) -> float:
return a.intersection(rect2) > 0
def does_not_overlap(rect: Rectangle, rectangles: Iterable[Rectangle]) -> list:
return not any(overlap(rect, rect2) for rect2 in rectangles if not rect == rect2)
rectangles = list(filter(partial(does_not_overlap, rectangles=rectangles), rectangles))
return rectangles
def remove_included(rectangles: Iterable[Rectangle]) -> list[Rectangle]:
rectangles = list(filter(partial(Rectangle.is_not_included, rectangles=rectangles), rectangles))
return rectangles
def __remove_isolated_unsorted(rectangles: Iterable[Rectangle]) -> list[Rectangle]:
def is_connected(rect: Rectangle, rectangles: Iterable[Rectangle]):
return any(rect.adjacent(rect2) for rect2 in rectangles if not rect == rect2)
rectangles = list(filter(partial(is_connected, rectangles=list(rectangles)), rectangles))
return rectangles
def __remove_isolated_sorted(rectangles: Iterable[Rectangle]) -> list[Rectangle]:
def is_connected(left, center, right):
return any([left.adjacent(center), center.adjacent(right)])
rectangles = list(rectangles)
lefts = [None, *rectangles[:-1]]
rights = [*rectangles[1:], None]
mask = starmap(is_connected, zip(lefts, rectangles, rights))
rectangles = list(compress(rectangles, mask))
return rectangles
def remove_isolated(rectangles: Iterable[Rectangle], input_unsorted=True) -> list[Rectangle]:
return (__remove_isolated_unsorted if input_unsorted else __remove_isolated_sorted)(rectangles)
def has_no_parent(hierarchy):
return hierarchy[-1] <= 0

View File

@ -1,5 +1,6 @@
from json import dumps
from typing import Iterable
import numpy as np
from funcy import identity
@ -48,6 +49,55 @@ class Rectangle:
def xywh(self):
return self.x1, self.y1, self.w, self.h
def intersection(self, rect):
bx1, by1, bx2, by2 = rect.xyxy()
if (self.x1 > bx2) or (bx1 > self.x2) or (self.y1 > by2) or (by1 > self.y2):
return 0
intersection_ = (min(self.x2, bx2) - max(self.x1, bx1)) * (min(self.y2, by2) - max(self.y1, by1))
return intersection_
def area(self):
return (self.x2 - self.x1) * (self.y2 - self.y1)
def iou(self, rect):
intersection = self.intersection(rect)
if intersection == 0:
return 0
union = self.area() + rect.area() - intersection
return intersection / union
def includes(self, rect: "Rectangle", tol=3):
"""does a include b?"""
return (
rect.x1 + tol >= self.x1
and rect.y1 + tol >= self.y1
and rect.x2 - tol <= self.x2
and rect.y2 - tol <= self.y2
)
def is_not_included(self, rectangles: Iterable["Rectangle"]):
return not any(self.includes(rect) for rect in rectangles if not rect == self)
def adjacent(self, rect2: "Rectangle", tolerance=7):
# tolerance=1 was set too low; most lines are 2px wide
def adjacent2d(sixtuple):
g, h, i, j, k, l = sixtuple
return (abs(g - h) <= tolerance) and any(k <= p <= l for p in [i, j])
if rect2 is None:
return False
return any(
map(
adjacent2d,
[
(self.x2, rect2.x1, rect2.y1, rect2.y2, self.y1, self.y2),
(self.x1, rect2.x2, rect2.y1, rect2.y2, self.y1, self.y2),
(self.y2, rect2.y1, rect2.x1, rect2.x2, self.x1, self.x2),
(self.y1, rect2.y2, rect2.x1, rect2.x2, self.x1, self.x2),
],
)
)
@classmethod
def from_xyxy(cls, xyxy_tuple, discrete=True):
x1, y1, x2, y2 = xyxy_tuple
@ -58,6 +108,10 @@ class Rectangle:
x, y, w, h = xywh_tuple
return cls(x1=x, y1=y, w=w, h=h, discrete=discrete)
@classmethod
def from_dict_xywh(cls, xywh_dict, discrete=True):
return cls(x1=xywh_dict["x"], y1=xywh_dict["y"], w=xywh_dict["width"], h=xywh_dict["height"], discrete=discrete)
def __str__(self):
return dumps(self.json(), indent=self.indent)
@ -67,6 +121,9 @@ class Rectangle:
def __iter__(self):
return list(self.json().values()).__iter__()
def __eq__(self, rect):
return all([self.x1 == rect.x1, self.y1 == rect.y1, self.w == rect.w, self.h == rect.h])
class Contour:
def __init__(self):

View File

@ -1,66 +1,23 @@
from typing import Iterable
import numpy as np
from cv_analysis.utils.structures import Rectangle
def xyxy_from_object(box_object):
try:
x1, y1, x2, y2 = box_object.xyxy()
except:
try:
x1 = box_object["x"]
y1 = box_object["y"]
x2 = x1 + box_object["width"]
y2 = y1 + box_object["height"]
except:
x1, y1, x2, y2 = box_object
return x1, y1, x2, y2
def xywh_from_object(box_object):
try:
x, y, w, h = box_object.xywh()
except:
try:
x = box_object["x"]
y = box_object["y"]
w = box_object["width"]
h = box_object["height"]
except:
x, y, w, h = box_object
return x, y, w, h
def compute_iou_from_boxes(box1: Rectangle, box2: list):
"""
Each box of the form (x1, y1, delx, dely)
"""
ax1, ay1, aw, ah = xywh_from_object(box1)
bx1, by1, bw, bh = xywh_from_object(box2)
ax2, ay2, bx2, by2 = ax1 + aw, ay1 + ah, bx1 + bw, by1 + bh
if (ax1 > bx2) or (bx1 > ax2) or (ay1 > by2) or (by1 > ay2):
return 0
intersection = (min(ax2, bx2) - max(ax1, bx1)) * (min(ay2, by2) - max(ay1, by1))
area_a = (ax2 - ax1) * (ay2 - ay1)
area_b = (bx2 - bx1) * (by2 - by1)
union = area_a + area_b - intersection
return intersection / union
def find_max_overlap(box, box_list):
best_candidate = max(box_list, key=lambda x: compute_iou_from_boxes(box, x))
iou = compute_iou_from_boxes(box, best_candidate)
def find_max_overlap(box: Rectangle, box_list: Iterable[Rectangle]):
best_candidate = max(box_list, key=lambda x: box.iou(x))
iou = box.iou(best_candidate)
return best_candidate, iou
def compute_page_iou(results_box_list, gt_box_list):
results = results_box_list.copy()
gt = gt_box_list.copy()
if (not results) or (not gt):
def compute_page_iou(results_boxes: Iterable[Rectangle], ground_truth_boxes: Iterable[Rectangle]):
results = list(results_boxes)
truth = list(ground_truth_boxes)
if (not results) or (not truth):
return 0
iou_sum = 0
denominator = max(len(results), len(gt))
while gt and results:
gt_box = gt.pop()
denominator = max(len(results), len(truth))
while results and truth:
gt_box = truth.pop()
best_match, best_iou = find_max_overlap(gt_box, results)
results.remove(best_match)
iou_sum += best_iou
@ -75,9 +32,30 @@ def compute_document_score(results_dict, annotation_dict):
scores = []
for i in range(len(annotation_dict["pages"])):
scores.append(compute_page_iou(results_dict["pages"][i]["cells"], annotation_dict["pages"][i]["cells"]))
scores = np.array(scores)
scores.append(
compute_page_iou(
map(Rectangle.from_dict_xywh, results_dict["pages"][i]["cells"]),
map(Rectangle.from_dict_xywh, annotation_dict["pages"][i]["cells"]),
)
)
doc_score = np.average(scores, weights=page_weights)
doc_score = np.average(np.array(scores), weights=page_weights)
return doc_score
"""
from cv_analysis.utils.test_metrics import *
r1 = Rectangle.from_dict_xywh({'x': 30, 'y': 40, 'width': 50, 'height': 60})
r2 = Rectangle.from_dict_xywh({'x': 40, 'y': 30, 'width': 55, 'height': 65})
r3 = Rectangle.from_dict_xywh({'x': 45, 'y': 35, 'width': 45, 'height': 55})
r4 = Rectangle.from_dict_xywh({'x': 25, 'y': 45, 'width': 45, 'height': 55})
d1 = {"pages": [{"cells": [r1.json_xywh(), r2.json_xywh()]}]}
d2 = {"pages": [{"cells": [r3.json_xywh(), r4.json_xywh()]}]}
compute_iou_from_boxes(r1, r2)
find_max_overlap(r1, [r2, r3, r4])
compute_page_iou([r1, r2], [r3, r4])
compute_document_score(d1, d2)
"""