seperate function which is filtering for isolated boxes
This commit is contained in:
parent
cf5851b652
commit
edf3bfe446
@ -4,11 +4,11 @@ import cv2
|
||||
import numpy as np
|
||||
import pdf2image
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from timeit import timeit
|
||||
|
||||
def parse(image: np.array):
|
||||
gray_scale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
th1, img_bin = cv2.threshold(gray_scale, 150, 225, cv2.THRESH_BINARY)
|
||||
th1, img_bin = cv2.threshold(gray_scale, 200, 255, cv2.THRESH_BINARY)
|
||||
img_bin = ~img_bin
|
||||
|
||||
line_min_width = 5
|
||||
@ -25,12 +25,39 @@ def parse(image: np.array):
|
||||
return labels, stats
|
||||
|
||||
|
||||
# def filter_unconnected_cells(stats):
|
||||
# filtered_cells = []
|
||||
# for i, val in enumerate(stats[2:]):
|
||||
# x, y, w, h, area = stats[i][0], stats[i][1], stats[i][2], stats[i][3], stats[i][4]
|
||||
# if w > 35 and h > 13 and area > 500:
|
||||
# # print(stats[i])
|
||||
# if y == stats[i - 1][1] or y == stats[i + 1][1]:
|
||||
# filtered_cells.append(stats[i])
|
||||
# return filtered_cells
|
||||
#
|
||||
#
|
||||
#
|
||||
# def annotate_image(image, stats):
|
||||
# stats = filter_unconnected_cells(stats)
|
||||
# for i,val in enumerate(stats):
|
||||
# x, y, w, h, area = stats[i][0], stats[i][1], stats[i][2], stats[i][3], stats[i][4]
|
||||
# cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 255), 2)
|
||||
#
|
||||
# for i, (s, v) in enumerate(zip(["x", "y", "w", "h"], [x, y, w, h])):
|
||||
# anno = f"{s} = {v}"
|
||||
# xann = int(x + 5)
|
||||
# yann = int(y + h - (20 * (i + 1)))
|
||||
# cv2.putText(image, anno, (xann, yann), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2)
|
||||
#
|
||||
# return image
|
||||
|
||||
def annotate_image(image, stats):
|
||||
print(stats.shape)
|
||||
for i in range(2, len(stats)):
|
||||
x,y,w,h,area = stats[i][0],stats[i][1],stats[i][2],stats[i][3],stats[i][4]
|
||||
x, y, w, h, area = stats[i][0], stats[i][1], stats[i][2], stats[i][3], stats[i][4]
|
||||
if w > 35 and h > 13 and area > 500:
|
||||
#print(stats[i])
|
||||
if y == stats[i-1][1] or y == stats[i+1][1]:
|
||||
# print(stats[i])
|
||||
if y == stats[i - 1][1] or y == stats[i + 1][1]:
|
||||
cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 255), 2)
|
||||
|
||||
for i, (s, v) in enumerate(zip(["x", "y", "w", "h"], [x, y, w, h])):
|
||||
@ -48,14 +75,17 @@ def parse_tables_in_pdf(pages):
|
||||
|
||||
|
||||
def annotate_tables_in_pdf(pdf_path, page_index=1):
|
||||
timeit()
|
||||
page = pdf2image.convert_from_path(pdf_path, first_page=page_index + 1, last_page=page_index + 1)[0]
|
||||
page = np.array(page)
|
||||
|
||||
_, stats = parse(page)
|
||||
page = annotate_image(page, stats)
|
||||
print(timeit())
|
||||
fig, ax = plt.subplots(1, 1)
|
||||
fig.set_size_inches(20, 20)
|
||||
ax.imshow(page)
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user