Compare commits

...

4 Commits

Author SHA1 Message Date
llocarnini
aa3d90a2dc merge master 2022-09-20 17:26:56 +02:00
llocarnini
f4cdc13dcf Merge branch 'master' of ssh://git.iqser.com:2222/rr/cv-analysis into optimize_layout_detection 2022-09-20 17:25:43 +02:00
llocarnini
ba33417166 partial clean up 2022-09-20 17:25:03 +02:00
llocarnini
5a7b756fc1 added two files with two not completed version for labeling layout rects. WIP 2022-09-20 08:28:18 +02:00
7 changed files with 220 additions and 54 deletions

View File

@ -7,7 +7,10 @@ import cv2
import numpy as np
from cv_analysis.utils.connect_rects import connect_related_rects2
from cv_analysis.utils.connect_rects import connect_related_rects
from cv_analysis.utils.display import show_image_mpl
from cv_analysis.utils.draw import draw_rectangles
from cv_analysis.utils.label_rects import label_rects
from cv_analysis.utils.structures import Rectangle
from cv_analysis.utils.postprocessing import (
remove_overlapping,
@ -53,7 +56,7 @@ def fill_in_component_area(image, rect):
def parse_layout(image: np.array):
image = image.copy()
image_ = image.copy()
#show_image_mpl(image)
if len(image_.shape) > 2:
image_ = cv2.cvtColor(image_, cv2.COLOR_BGR2GRAY)
@ -80,8 +83,7 @@ def parse_layout(image: np.array):
rects = remove_included(rects)
rects = map(lambda r: r.xywh(), rects)
rects = connect_related_rects2(rects)
rects = connect_related_rects(rects)
rects = list(map(Rectangle.from_xywh, rects))
rects = remove_included(rects)
# rects = remove_included(rects)
return rects

View File

@ -6,7 +6,6 @@ import cv2
import numpy as np
from funcy import lmap
from cv_analysis.layout_parsing import parse_layout
from cv_analysis.utils.postprocessing import remove_isolated # xywh_to_vecs, xywh_to_vec_rect, adjacent1d
from cv_analysis.utils.structures import Rectangle
from cv_analysis.utils.visual_logging import vizlogger
@ -86,32 +85,36 @@ def isolate_vertical_and_horizontal_components(img_bin):
return img_bin_final
def find_table_layout_boxes(image: np.array):
def is_large_enough(box):
(x, y, w, h) = box
if w * h >= 100000:
return Rectangle.from_xywh(box)
layout_boxes = parse_layout(image)
a = lmap(is_large_enough, layout_boxes)
return lmap(is_large_enough, layout_boxes)
def preprocess(image: np.array):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) > 2 else image
_, image = cv2.threshold(image, 195, 255, cv2.THRESH_BINARY)
return ~image
# def turn_connected_components_into_rects(image: np.array):
# def is_large_enough(stat):
# x1, y1, w, h, area = stat
# return area > 2000 and w > 35 and h > 25
#
# _, _, stats, _ = cv2.connectedComponentsWithStats(~image, connectivity=8, ltype=cv2.CV_32S)
#
# stats = np.vstack(list(filter(is_large_enough, stats)))
# rects = list(map(Rectangle.from_xywh, stats[:, :-1][2:]))
# return remove_isolated(rects)
def turn_connected_components_into_rects(image: np.array):
def is_large_enough(stat):
x1, y1, w, h, area = stat
return area > 2000 and w > 35 and h > 25
_, _, stats, _ = cv2.connectedComponentsWithStats(~image, connectivity=8, ltype=cv2.CV_32S)
try:
stats = np.vstack(list(filter(is_large_enough, stats)))
return stats[:, :-1][2:]
rects = list(map(Rectangle.from_xywh, stats[:, :-1][2:]))
return remove_isolated(rects)
except ValueError:
return []
def parse_tables(image: np.array, show=False):
@ -128,9 +131,9 @@ def parse_tables(image: np.array, show=False):
image = isolate_vertical_and_horizontal_components(image)
rects = turn_connected_components_into_rects(image)
#print(rects, "\n\n")
rects = list(map(Rectangle.from_xywh, rects))
#rects = list(map(Rectangle.from_xywh, rects))
#print(rects, "\n\n")
rects = remove_isolated(rects)
#rects = remove_isolated(rects)
#print(rects, "\n\n")
return rects

View File

@ -65,38 +65,8 @@ def rects_not_the_same(r):
return r[0] != r[1]
def find_related_rects(rects):
rect_pairs = list(filter(is_related, combinations(rects, 2)))
rect_pairs = list(filter(rects_not_the_same, rect_pairs))
if not rect_pairs:
return [], rects
rel_rects = list(set([rect for pair in rect_pairs for rect in pair]))
unrel_rects = [rect for rect in rects if rect not in rel_rects]
return rect_pairs, unrel_rects
def connect_related_rects(rects):
rects_to_connect, rects_new = find_related_rects(rects)
while len(rects_to_connect) > 0:
rects_fused = list(starmap(fuse_rects, rects_to_connect))
rects_fused = list(dict.fromkeys(rects_fused))
if len(rects_fused) == 1:
rects_new += rects_fused
rects_fused = []
rects_to_connect, connected_rects = find_related_rects(rects_fused)
rects_new += connected_rects
if len(rects_to_connect) > 1 and len(set(rects_to_connect)) == 1:
rects_new.append(rects_fused[0])
rects_to_connect = []
return rects_new
def connect_related_rects2(rects: Iterable[tuple]):
def connect_related_rects(rects: Iterable[tuple]):
rects = list(rects)
current_idx = 0

View File

@ -0,0 +1,93 @@
from itertools import starmap
from typing import Iterable
import cv2
import numpy as np
from cv_analysis.figure_detection.text import remove_primary_text_regions, apply_threshold_to_image
from cv_analysis.table_parsing import preprocess, isolate_vertical_and_horizontal_components, \
turn_connected_components_into_rects
from cv_analysis.utils.display import show_image_mpl
def area_is_bigger_than(rect: tuple, maxarea=100000):
x, y, w, h = rect
return w * h >= maxarea
def define_rect(rect_img, original_position):
# print(original_position)
# show_image_mpl(rect_img)
xo, yo, wo, ho = original_position
rect_img_inv = preprocess(rect_img)
# print("pixel density inverted img", pixel_density(rect_img_inv))
grid_inv = isolate_vertical_and_horizontal_components(rect_img_inv)
cnts, _ = cv2.findContours(image=grid_inv, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE)
if cnts:
rects = turn_connected_components_into_rects(grid_inv)
rects = map(lambda r: r.xywh(), rects)
bbox = list((cv2.boundingRect(c) for c in cnts))
if len(list(rects)) > 1 and len(bbox) == 1:
x, y, w, h = bbox[0]
w_img, h_img = rect_img.shape
if w * h / (w_img * h_img) >= 0.75:
# print("is table")
return "table"
else:
# show_image_mpl(rect_img)
# print(" table detected but to small for layout rect, so cant be table, maybe figure?")
return "other"
else:
if is_header(yo + ho):
# print("is header component")
return "header component"
elif is_footer(yo):
# print("is footer component")
return "footer component"
else:
# print("single cell or no connected components, maybe figure?")
return "other"
else:
if is_header(yo + ho):
# print("is header text")
return "header text"
elif is_footer(yo):
# print("is footer text")
return "footer text"
else:
# print("is text")
return "text"
def is_header(y):
return y < 200
def is_footer(y):
return y > 2100
def is_text(img):
show_image_mpl(img)
cleaned = remove_primary_text_regions(img)
show_image_mpl(cleaned)
return pixel_density(cleaned) < 0.05
def pixel_density(img):
pixels = np.count_nonzero(img)
density = pixels / img.size
return density
def label_rects(image: np.array, rects: Iterable[tuple]):
def crop_image_rects(rect):
x, y, w, h = rect
return image[y:y + h, x:x + w]
rect_images = map(crop_image_rects, rects)
rect_labels = starmap(define_rect, zip(rect_images, rects))
return rect_labels

View File

@ -0,0 +1,96 @@
from itertools import starmap
from typing import Iterable
import cv2
import numpy as np
from cv_analysis.figure_detection.text import remove_primary_text_regions, apply_threshold_to_image
from cv_analysis.table_parsing import preprocess, isolate_vertical_and_horizontal_components, \
turn_connected_components_into_rects
from cv_analysis.utils.display import show_image_mpl
def area_is_bigger_than(rect: tuple, maxarea=100000):
x, y, w, h = rect
return w * h >= maxarea
def define_rect(rect_img, original_position):
show_image_mpl(rect_img)
x,y,w,h = original_position
if is_header(y+h):
print(original_position, " is header")
return "header"
elif is_footer(y):
print(original_position, " is footer")
return "footer"
elif is_table(rect_img):
print(original_position, " is table")
return "table"
elif is_text(rect_img):
print(original_position, " is text")
return "text"
else:
return "other"
def is_table(rect_img):
rect_img_inv = preprocess(rect_img)
grid_inv = isolate_vertical_and_horizontal_components(rect_img_inv)
cnts, _ = cv2.findContours(image=grid_inv, mode=cv2.RETR_EXTERNAL, method=cv2.CHAIN_APPROX_SIMPLE)
if cnts:
rects = turn_connected_components_into_rects(grid_inv)
rects = map(lambda r: r.xywh(), rects)
bbox = list((cv2.boundingRect(c) for c in cnts))
if len(list(rects)) > 1 and len(bbox) == 1:
x, y, w, h = bbox[0]
w_img, h_img = rect_img.shape
if w * h / (w_img * h_img) >= 0.75:
#print("is table")
return True
else:
print(" table detected but to small for layout rect, so cant be table, maybe figure?")
return False
else:
print("single cell or no connected components, maybe figure?")
return False
else:
print("not a table, but text?")
return False
def is_header(y):
return y < 200
def is_footer(y):
return y > 2150
def is_text(img):
show_image_mpl(img)
cleaned = remove_primary_text_regions(img)
show_image_mpl(cleaned)
return pixel_density(cleaned) < 0.05
def pixel_density(img):
pixels = np.count_nonzero(img)
density = pixels / img.size
return density
def annotate_rect(rect, rect_img):
pass
def label_rects(rects: Iterable[tuple], image: np.array):
def crop_image_rects(rect):
x, y, w, h = rect
return image[y:y + h, x:x + w]
rect_images = map(crop_image_rects, rects)
rect_labels = starmap(define_rect, zip(rect_images, rects))
print(rect_labels)
return rect_labels

@ -1 +1 @@
Subproject commit 88b4c5c7ce9852b8aa4bdd6b760f4c8b708df62b
Subproject commit 71ad2af4eb278a3718ad5385b06f07faa9059e9f

View File

@ -13,6 +13,8 @@ from cv_analysis.table_parsing import parse_tables
from cv_analysis.utils.draw import draw_rectangles
from pdf2img.conversion import convert_pages_to_images
from cv_analysis.utils.sort_rects import label_rects
def parse_args():
parser = argparse.ArgumentParser()