Compare commits

...

2 Commits

Author SHA1 Message Date
iriley
99359596da chore: bump package versions 2024-07-19 22:47:05 +02:00
iriley
ef02253ad7 chore: bump package versions 2024-07-19 22:43:54 +02:00
8 changed files with 1445 additions and 1105 deletions

2
.gitignore vendored
View File

@ -50,3 +50,5 @@ __pycache__/
# unignore files
!bom.*
dotted/

View File

@ -8,7 +8,7 @@ repos:
rev: v4.5.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
# - id: end-of-file-fixer
- id: check-yaml
args: [--unsafe] # needed for .gitlab-ci.yml
- id: check-toml

View File

@ -15,6 +15,7 @@
(pkgs.buildFHSUserEnv rec {
name = "cv-analysis-service";
targetPkgs = pkgs: (with pkgs; [
python310
poppler_utils
zlib
poetry

2461
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -31,6 +31,7 @@ pdf2img = { version = "0.7.0", source = "gitlab-red" }
dvc-azure = "^2.21.2"
pymupdf = "^1.24.1"
types-pillow = "^10.2.0.20240423"
#matplotlib-backend-wezterm = "^2.1.2"
[tool.poetry.group.test.dependencies]
pytest = "^7.0.1"

8
scripts/grid_search.py Normal file
View File

@ -0,0 +1,8 @@
from cv_analysis.table_inference import infer_lines
def grid_search() -> None: ...
if __name__ == "__main__":
grid_search()

View File

@ -1,6 +1,6 @@
from operator import itemgetter
from pathlib import Path
from typing import Callable, Optional, Tuple
from typing import Callable, Iterable, Optional, Tuple
import cv2
import matplotlib.pyplot as plt
@ -9,6 +9,8 @@ from kn_utils.logging import logger # type: ignore
from numpy import ndarray as Array
from scipy.stats import norm # type: ignore
from .utils.dotted_lines import detect_dotted_from_extrema
def show_multiple(arrs: Tuple[Array], title: str = ""):
plt.clf()
@ -150,16 +152,65 @@ def filter_fp_col_lines(line_list: list[int], filt_sums: Array) -> list[int]:
return line_list
def sharpen_sums(sums: Array) -> Array:
sums = sums.astype("int64")
shift = 3
diffs = abs(sums[shift:-shift] - sums[2 * shift :]) + abs(sums[shift:-shift] - sums[: -2 * shift])
f2 = filter_array(sums, FILTERS["col"][2])
return diffs
def detect_dotted_lines(
image: Array,
sums: Iterable,
horizontal: bool = True,
threshold: float = 1.0,
min_distance: int = 2,
max_distance: int = 20,
) -> bool:
key = "row" if horizontal else "col"
naive = filter_array(sums, FILTERS[key][1])
naive_lines = np.where((naive[1:-1] < naive[:-2]) * (naive[1:-1] < naive[2:]) * (sums[1:-1] < 250))[0] + 1
bool_array = np.zeros(image.shape[1 - int(horizontal)])
for idx in naive_lines:
band = image[idx - 1 : idx + 2, :] if horizontal else image[:, idx - 1 : idx + 1]
band_sums = np.mean(band, axis=1 - int(horizontal))
band_sums = filter_array(band_sums, FILTERS[key][1])
extrema = np.where((band_sums[1:-1] < band_sums[:-2]) * (band_sums[1:-1] < band_sums[2:]))[0] + 1
distances = extrema[1:] - extrema[:-1]
mean = np.mean(distances)
std = np.std(distances)
check = "" if (ratio := (mean / (std + 0.01))) > 1.5 and mean < 40 else ""
print(f"{idx:4} {mean:6.2f} {std:6.2f} {ratio:6.2f} {check}")
score = std # maybe make more advanced score function later
if (min_distance <= mean <= max_distance) and (score < threshold):
print(idx)
bool_array[idx] = 1
return bool_array
def get_lines_either(table_array: Array, horizontal=True) -> list[int]:
key = "row" if horizontal else "col"
h, w = map(int, table_array.shape)
table_array = (
table_array[:, int(0.1 * w) : int(0.9 * w)] if horizontal else table_array[int(0.1 * h) : int(0.9 * h)]
)
sums = np.mean(table_array, axis=int(horizontal))
dotted = detect_dotted_lines(table_array, sums, horizontal=horizontal)
threshold = 0.3 * 255 # np.mean(sums) - (1 + 2 * horizontal) * np.std(sums)
predicate = 1000.0 * (sums < threshold)
predicate = 1000.0 * ((sums < threshold) | dotted)
sums = np.maximum(
np.maximum(sums[1:-1], predicate[1:-1]),
np.maximum(predicate[:-2], predicate[2:]),
)
filtered_sums = filter_array(sums, FILTERS[key][1])
filtered_sums = filter_array(filtered_sums, FILTERS[key][2])
filtered_sums = filter_array(filtered_sums, FILTERS[key][3])
@ -179,9 +230,7 @@ def img_bytes_to_array(img_bytes: bytes) -> Array:
def infer_lines(img: Array) -> dict[str, dict[str, int] | list[dict[str, int]]]:
cv2.imwrite("/tmp/table.png", img)
_, img = cv2.threshold(img, 220, 255, cv2.THRESH_BINARY)
cv2.imwrite("/tmp/table_bin.png", img)
h, w = map(int, img.shape)
row_vals = map(int, get_lines_either(img, horizontal=True))
col_vals = map(int, get_lines_either(img, horizontal=False))

View File

@ -0,0 +1,18 @@
"""
General approach:
Get horizontal and vertical pixel sum extrema. Then take a band of k around each minimum (corresponding to darkest), e.g. k=3.
Recalculate minima for each band.
Compute a list of distances between minima.
Compute the mean and standard deviation between minima.
If rho:=std/(eta*mean) < phi for some threshold phi, the band contains a dotted line. -> logic: std can be larger for larger mean, i.e. more spaced-out dotted lines
Pros:
Intuitive and efficient.
Cons:
May not work for irregular/mixed dotted lines, such as (possibly) --*--*--*--*--*--*--*--*--*--*--
"""
from typing import Iterable
import numpy as np