from functools import reduce from typing import Iterable import cv2 import numpy as np from funcy import first from cv_analysis.utils.rectangle import Rectangle def find_contours_and_hierarchies(image): contours, hierarchies = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) return contours, first(hierarchies) if hierarchies is not None else None def dilate_page_components(image: np.ndarray) -> np.ndarray: # FIXME: Parameterize via factory image = cv2.GaussianBlur(image, (7, 7), 0) # FIXME: Parameterize via factory thresh = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] # FIXME: Parameterize via factory kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) # FIXME: Parameterize via factory dilate = cv2.dilate(thresh, kernel, iterations=4) return dilate def normalize_to_gray_scale(image: np.ndarray) -> np.ndarray: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) > 2 else image return image def threshold_image(image: np.ndarray) -> np.ndarray: # FIXME: Parameterize via factory _, image = cv2.threshold(image, 254, 255, cv2.THRESH_BINARY) return image def invert_image(image: np.ndarray): return ~image def fill_rectangles(image: np.ndarray, rectangles: Iterable[Rectangle]) -> np.ndarray: image = reduce(fill_in_component_area, rectangles, image) return image def fill_in_component_area(image: np.ndarray, rectangle: Rectangle) -> np.ndarray: cv2.rectangle(image, (rectangle.x1, rectangle.y1), (rectangle.x2, rectangle.y2), (0, 0, 0), -1) cv2.rectangle(image, (rectangle.x1, rectangle.y1), (rectangle.x2, rectangle.y2), (255, 255, 255), 7) return image