Matthias Bisping 619f67f1fd Refactoring
Various
2023-01-09 16:51:58 +01:00

130 lines
4.0 KiB
Python

import cv2
import numpy as np
from funcy import lmap, lfilter
from cv_analysis.layout_parsing import parse_layout
from cv_analysis.utils.conversion import box_to_rectangle
from cv_analysis.utils.postprocessing import remove_isolated
from cv_analysis.utils.visual_logger import vizlogger
def add_external_contours(image, image_h_w_lines_only):
contours, _ = cv2.findContours(image_h_w_lines_only, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(image, (x, y), (x + w, y + h), 255, 1)
return image
def apply_motion_blur(image: np.array, angle, size=80):
"""Solidifies and slightly extends detected lines.
Args:
image (np.array): page image as array
angle: direction in which to apply blur, 0 or 90
size (int): kernel size; 80 found empirically to work well
Returns:
np.ndarray
"""
k = np.zeros((size, size), dtype=np.float32)
vizlogger.debug(k, "tables08_blur_kernel1.png")
k[(size - 1) // 2, :] = np.ones(size, dtype=np.float32)
vizlogger.debug(k, "tables09_blur_kernel2.png")
k = cv2.warpAffine(
k,
cv2.getRotationMatrix2D((size / 2 - 0.5, size / 2 - 0.5), angle, 1.0),
(size, size),
)
vizlogger.debug(k, "tables10_blur_kernel3.png")
k = k * (1.0 / np.sum(k))
vizlogger.debug(k, "tables11_blur_kernel4.png")
blurred = cv2.filter2D(image, -1, k)
return blurred
def isolate_vertical_and_horizontal_components(img_bin):
"""Identifies and reinforces horizontal and vertical lines in a binary image.
Args:
img_bin (np.array): array corresponding to single binarized page image
Returns:
np.ndarray
"""
line_min_width = 48
kernel_h = np.ones((1, line_min_width), np.uint8)
kernel_v = np.ones((line_min_width, 1), np.uint8)
img_bin_h = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, kernel_h)
img_bin_v = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, kernel_v)
img_lines_raw = img_bin_v | img_bin_h
kernel_h = np.ones((1, 30), np.uint8)
kernel_v = np.ones((30, 1), np.uint8)
img_bin_h = cv2.dilate(img_bin_h, kernel_h, iterations=2)
img_bin_v = cv2.dilate(img_bin_v, kernel_v, iterations=2)
img_bin_h = apply_motion_blur(img_bin_h, 0)
img_bin_v = apply_motion_blur(img_bin_v, 90)
img_bin_extended = img_bin_h | img_bin_v
th1, img_bin_extended = cv2.threshold(img_bin_extended, 120, 255, cv2.THRESH_BINARY)
img_bin_final = cv2.dilate(img_bin_extended, np.ones((1, 1), np.uint8), iterations=1)
# add contours before lines are extended by blurring
img_bin_final = add_external_contours(img_bin_final, img_lines_raw)
return img_bin_final
def find_table_layout_boxes(image: np.array):
def is_large_enough(box):
(x, y, w, h) = box
if w * h >= 100000:
return box_to_rectangle(box)
layout_boxes = parse_layout(image)
return lmap(is_large_enough, layout_boxes)
def preprocess(image: np.array):
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) > 2 else image
_, image = cv2.threshold(image, 195, 255, cv2.THRESH_BINARY)
return ~image
def turn_connected_components_into_rectangles(image: np.array):
def is_large_enough(stat):
x1, y1, w, h, area = stat
return area > 2000 and w > 35 and h > 25
_, _, stats, _ = cv2.connectedComponentsWithStats(~image, connectivity=8, ltype=cv2.CV_32S)
stats = lfilter(is_large_enough, stats)
if stats:
stats = np.vstack(stats)
return stats[:, :-1][2:]
return []
def parse_tables(image: np.array):
"""Runs the full table parsing process.
Args:
image (np.array): single PDF page, converted to a numpy array
Returns:
list: list of rectangles corresponding to table cells
"""
image = preprocess(image)
image = isolate_vertical_and_horizontal_components(image)
boxes = turn_connected_components_into_rectangles(image)
rectangles = lmap(box_to_rectangle, boxes)
rectangles = remove_isolated(rectangles)
return rectangles