cv-analysis-service/cv_analysis/test/scripts/export_example_pages.py
2022-05-17 09:17:24 +02:00

117 lines
3.8 KiB
Python

import os
from os import path
import pandas as pd
from pdf2image import convert_from_path
from itertools import chain
import json
from cv_analysis.locations import PDF_FOR_TESTING, TEST_DATA_DIR, PNG_FOR_TESTING, DVC_DATA_DIR, HASHED_PDFS
from cv_analysis.utils.deduplicate_pdfs import hash_pdf_files
def read_json(path):
with open(path, encoding='utf-8') as file:
data = json.load(file)
return data
# def collect_metadata(example_pages, save=False):
# metadata = []
# i = 0
# for name, document_sections in example_pages.items():
# for pages in document_sections:
# span = list(range(pages[0], pages[1] + 1))
# for page_nr in span:
# metadata.append(["fig_table" + str(i), name, page_nr])
# i += 1
# if save:
# df = pd.DataFrame(data=metadata, columns=["image_name", "pdf_name", "page"])
# df.to_csv("/exported_files/test_pages.csv")
# else:
# return pd.DataFrame(data=metadata, columns=["image_name", "pdf_name", "page"])
def collect_metadata(example_pages, save=False):
metadata = []
make_metadata_entry = make_metadata_entry_maker()
for name, document_sections in example_pages.items():
metadata.append(f(name, document_sections, make_metadata_entry))
metadata = list(chain.from_iterable(metadata))
if save:
df = pd.DataFrame(data=metadata, columns=["image_name", "pdf_name", "page"])
df.to_csv(path.join(DVC_DATA_DIR, "metadata_testing_files.csv"))
else:
return pd.DataFrame(data=metadata, columns=["image_name", "pdf_name", "page"])
def f(name, document_sections, make_metadata_entry):
for pages in document_sections:
span = list(range(pages[0], pages[1] + 1))
for page_nr in span:
yield make_metadata_entry(name, page_nr)
def make_metadata_entry_maker():
i = -1
def make_metadata_entry(name, page_nr):
nonlocal i
i += 1
return ["fig_table" + str(i), name, page_nr]
return make_metadata_entry
def split_pdf(example_pages):
dir_path = PDF_FOR_TESTING
i = 0
for name, document_sections in example_pages.items():
for pages in document_sections:
images = convert_from_path(pdf_path=path.join(dir_path, name), dpi=300, first_page=pages[0],
last_page=pages[1])
for image in images:
fp = path.join(PNG_FOR_TESTING, "fig_table" + str(i) + ".png")
image.save(fp=fp, dpi=(300, 300))
i += 1
def rename_files_with_hash(example_pages,hashes):
files_to_rename = list(example_pages.keys())
folder = HASHED_PDFS
# Iterate through the folder
for file in os.listdir(folder):
# Checking if the file is present in the list
if file in files_to_rename:
# construct current name using file name and path
old_name = path.join(folder, file)
# get file name without extension
only_name = path.splitext(file)[0]
# Adding the new name with extension
new_base = only_name + '_new' + '.txt'
# construct full file path
new_name = path.join(folder, new_base)
# Renaming the file
os.rename(old_name, new_name)
# verify the result
res = os.listdir(folder)
print(res)
def hash_pdfs(example_pages):
pdf_paths = list(path.join(PDF_FOR_TESTING, pdf_name) for pdf_name in example_pages.keys())
hashes = hash_pdf_files(paths=pdf_paths, verbose=0)
example_pages = dict(zip(hashes, example_pages.values()))
return example_pages
def main():
examples_pages = read_json(path.join(TEST_DATA_DIR, "example_pages.json"))
examples_pages = hash_pdfs(examples_pages)
collect_metadata(examples_pages, save=True)
#split_pdf(examples_pages)
if __name__ == "__main__":
main()