2022-07-20 16:40:36 +02:00

44 lines
1.4 KiB
Python

import gzip
from operator import itemgetter
from typing import Callable
from funcy import lmap
from pyinfra.server.utils import make_streamable_and_wrap_in_packing_logic
from cv_analysis.server.format import make_formatter
from cv_analysis.utils.logging import get_logger
from cv_analysis.utils.open_pdf import open_pdf
logger = get_logger()
def make_streamable_analysis_fn(analysis_fn: Callable):
"""Makes an analysis function streamable for pyinfra server logic. The wrapped function then
works with data and metadata and returns a tuple or generator of tuples with data and metadata.
For more information about the server logic, see the PyInfra documentation.
Args:
analysis_fn: cv-analysis function
Returns:
wrapped function
"""
def analyse(data: bytes, metadata: dict):
image = open_pdf(gzip.decompress(data))[0]
dpi = metadata["image_info"]["dpi"]
width, height, rotation = itemgetter("width", "height", "rotation")(metadata["page_info"])
formatter = make_formatter(dpi, (width, height), rotation)
results = map(lambda x: x.json_xywh(), analysis_fn(image))
results = {"cells": (lmap(formatter, results))}
logger.debug(f"Page {metadata['page_info'].get('index', '')}: Found {len(results['cells'])} cells.")
return b"", {**metadata, **results}
return make_streamable_and_wrap_in_packing_logic(analyse, batched=False)