60 lines
1.8 KiB
Python

import gzip
import io
import numpy as np
import cv2
import pytest
from funcy import first
from cv_analysis.utils.structures import Rectangle
from incl.pyinfra.pyinfra.server.packing import bytes_to_string
@pytest.fixture
def random_image_as_bytes_and_compressed(random_image):
image = cv2.cvtColor(random_image.astype("uint8"), cv2.COLOR_RGB2RGBA)
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format="PNG")
return gzip.compress(img_byte_arr.getvalue())
@pytest.fixture
def random_image_metadata_package(random_image_as_bytes_and_compressed):
data = bytes_to_string(random_image_as_bytes_and_compressed)
return [
{
"data": data,
"metadata": {
"page_info": {"width": 1000, "height": 2000, "rotation": 90},
"image_info": {"dpi": 200},
},
}
]
@pytest.fixture
def expected_analyse_metadata(operation, random_image_metadata_package, image_size):
metadata = first(random_image_metadata_package)
metadata = metadata["metadata"]
if image_size == (200, 200):
result_metadata = {"cells": [{"height": 72.0, "width": 71.99999999999999, "x": 0.0, "y": 1928.0}]}
elif image_size == (500, 500):
result_metadata = {"cells": [{"height": 180.0, "width": 179.99999999999997, "x": 0.0, "y": 1820.0}]}
elif image_size == (800, 800):
result_metadata = {"cells": [{"height": 288.0, "width": 287.99999999999994, "x": 0.0, "y": 1712.0}]}
else:
result_metadata = {}
if operation == "mock":
return {**metadata, **result_metadata}
@pytest.fixture
def analysis_fn_mock(operation):
def analyse_mock(image: np.ndarray):
return [Rectangle.from_xywh((0, 0, image.shape[1], image.shape[0]))]
return analyse_mock