136 lines
4.3 KiB
Python
136 lines
4.3 KiB
Python
import cv2
|
|
import numpy as np
|
|
from funcy import lmap, lfilter
|
|
|
|
from cv_analysis.layout_parsing import parse_layout
|
|
from cv_analysis.utils.postprocessing import remove_isolated # xywh_to_vecs, xywh_to_vec_rect, adjacent1d
|
|
from cv_analysis.utils.structures import Rectangle
|
|
from cv_analysis.utils.visual_logging import vizlogger
|
|
|
|
|
|
def add_external_contours(image, image_h_w_lines_only):
|
|
|
|
contours, _ = cv2.findContours(image_h_w_lines_only, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
|
for cnt in contours:
|
|
x, y, w, h = cv2.boundingRect(cnt)
|
|
cv2.rectangle(image, (x, y), (x + w, y + h), 255, 1)
|
|
|
|
return image
|
|
|
|
|
|
def apply_motion_blur(image: np.array, angle, size=80):
|
|
"""Solidifies and slightly extends detected lines.
|
|
|
|
Args:
|
|
image (np.array): page image as array
|
|
angle: direction in which to apply blur, 0 or 90
|
|
size (int): kernel size; 80 found empirically to work well
|
|
|
|
Returns:
|
|
np.array
|
|
|
|
"""
|
|
k = np.zeros((size, size), dtype=np.float32)
|
|
vizlogger.debug(k, "tables08_blur_kernel1.png")
|
|
k[(size - 1) // 2, :] = np.ones(size, dtype=np.float32)
|
|
vizlogger.debug(k, "tables09_blur_kernel2.png")
|
|
k = cv2.warpAffine(
|
|
k,
|
|
cv2.getRotationMatrix2D((size / 2 - 0.5, size / 2 - 0.5), angle, 1.0),
|
|
(size, size),
|
|
)
|
|
vizlogger.debug(k, "tables10_blur_kernel3.png")
|
|
k = k * (1.0 / np.sum(k))
|
|
vizlogger.debug(k, "tables11_blur_kernel4.png")
|
|
blurred = cv2.filter2D(image, -1, k)
|
|
return blurred
|
|
|
|
|
|
def isolate_vertical_and_horizontal_components(img_bin):
|
|
"""Identifies and reinforces horizontal and vertical lines in a binary image.
|
|
|
|
Args:
|
|
img_bin (np.array): array corresponding to single binarized page image
|
|
bounding_rects (list): list of layout boxes of the form (x, y, w, h), potentially containing tables
|
|
|
|
Returns:
|
|
np.array
|
|
"""
|
|
line_min_width = 48
|
|
kernel_h = np.ones((1, line_min_width), np.uint8)
|
|
kernel_v = np.ones((line_min_width, 1), np.uint8)
|
|
|
|
img_bin_h = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, kernel_h)
|
|
img_bin_v = cv2.morphologyEx(img_bin, cv2.MORPH_OPEN, kernel_v)
|
|
img_lines_raw = img_bin_v | img_bin_h
|
|
|
|
kernel_h = np.ones((1, 30), np.uint8)
|
|
kernel_v = np.ones((30, 1), np.uint8)
|
|
img_bin_h = cv2.dilate(img_bin_h, kernel_h, iterations=2)
|
|
img_bin_v = cv2.dilate(img_bin_v, kernel_v, iterations=2)
|
|
|
|
img_bin_h = apply_motion_blur(img_bin_h, 0)
|
|
img_bin_v = apply_motion_blur(img_bin_v, 90)
|
|
|
|
img_bin_extended = img_bin_h | img_bin_v
|
|
|
|
th1, img_bin_extended = cv2.threshold(img_bin_extended, 120, 255, cv2.THRESH_BINARY)
|
|
img_bin_final = cv2.dilate(img_bin_extended, np.ones((1, 1), np.uint8), iterations=1)
|
|
# add contours before lines are extended by blurring
|
|
img_bin_final = add_external_contours(img_bin_final, img_lines_raw)
|
|
|
|
return img_bin_final
|
|
|
|
|
|
def find_table_layout_boxes(image: np.array):
|
|
def is_large_enough(box):
|
|
(x, y, w, h) = box
|
|
if w * h >= 100000:
|
|
return Rectangle.from_xywh(box)
|
|
|
|
layout_boxes = parse_layout(image)
|
|
a = lmap(is_large_enough, layout_boxes)
|
|
return lmap(is_large_enough, layout_boxes)
|
|
|
|
|
|
def preprocess(image: np.array):
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) > 2 else image
|
|
_, image = cv2.threshold(image, 195, 255, cv2.THRESH_BINARY)
|
|
return ~image
|
|
|
|
|
|
def turn_connected_components_into_rects(image: np.array):
|
|
def is_large_enough(stat):
|
|
x1, y1, w, h, area = stat
|
|
return area > 2000 and w > 35 and h > 25
|
|
|
|
_, _, stats, _ = cv2.connectedComponentsWithStats(~image, connectivity=8, ltype=cv2.CV_32S)
|
|
|
|
stats = lfilter(is_large_enough, stats)
|
|
if stats:
|
|
stats = np.vstack(stats)
|
|
return stats[:, :-1][2:]
|
|
return []
|
|
|
|
|
|
def parse_tables(image: np.array, show=False):
|
|
"""Runs the full table parsing process.
|
|
|
|
Args:
|
|
image (np.array): single PDF page, converted to a numpy array
|
|
|
|
Returns:
|
|
list: list of rectangles corresponding to table cells
|
|
"""
|
|
|
|
image = preprocess(image)
|
|
image = isolate_vertical_and_horizontal_components(image)
|
|
rects = turn_connected_components_into_rects(image)
|
|
# print(rects, "\n\n")
|
|
rects = list(map(Rectangle.from_xywh, rects))
|
|
# print(rects, "\n\n")
|
|
rects = remove_isolated(rects)
|
|
# print(rects, "\n\n")
|
|
|
|
return rects
|