cv-analysis-service/cv_analysis/layout_parsing.py
Matthias Bisping 3f0bbf0fc7 Refactoring
2023-01-10 11:59:01 +01:00

81 lines
2.3 KiB
Python

from functools import partial
from typing import Iterable, List
import cv2
import numpy as np
from funcy import compose, rcompose, lkeep
from cv_analysis.utils import lstarkeep
from cv_analysis.utils.common import (
find_contours_and_hierarchies,
dilate_page_components,
normalize_to_gray_scale,
threshold_image,
invert_image,
fill_rectangles,
)
from cv_analysis.utils.conversion import contour_to_rectangle
from cv_analysis.utils.merging import merge_related_rectangles
from cv_analysis.utils.postprocessing import remove_included, has_no_parent
from cv_analysis.utils.rectangle import Rectangle
def parse_layout(image: np.array) -> List[Rectangle]:
"""Parse the layout of a page.
Args:
image: Image of the page.
Returns:
List of rectangles representing the layout of the page as identified page elements.
"""
rectangles = rcompose(
find_segments,
remove_included,
merge_related_rectangles,
remove_included,
)(image)
return rectangles
def find_segments(image: np.ndarray) -> List[Rectangle]:
"""Find segments in a page. Segments are structural elements of a page, such as text blocks, tables, etc."""
rectangles = rcompose(
prepare_for_initial_detection,
__find_segments,
partial(prepare_for_meta_detection, image.copy()),
__find_segments,
)(image)
return rectangles
def prepare_for_initial_detection(image: np.ndarray) -> np.ndarray:
return compose(dilate_page_components, normalize_to_gray_scale)(image)
def __find_segments(image: np.ndarray) -> List[Rectangle]:
def to_rectangle_if_valid(contour, hierarchy):
return contour_to_rectangle(contour) if is_likely_segment(contour) and has_no_parent(hierarchy) else None
rectangles = lstarkeep(to_rectangle_if_valid, zip(*find_contours_and_hierarchies(image)))
return rectangles
def prepare_for_meta_detection(image: np.ndarray, rectangles: Iterable[Rectangle]) -> np.ndarray:
image = rcompose(
fill_rectangles,
threshold_image,
invert_image,
normalize_to_gray_scale,
)(image, rectangles)
return image
def is_likely_segment(rectangle: Rectangle, min_area: float = 100) -> bool:
# FIXME: Parameterize via factory
return cv2.contourArea(rectangle, False) > min_area