2023-01-23 13:14:48 +01:00

80 lines
1.4 KiB
Python

from __future__ import annotations
import cv2
import numpy as np
from PIL import Image
from funcy import first, iterate, keep
from numpy import generic
def copy_and_normalize_channels(image):
if isinstance(image, Image.Image):
image = np.array(image)
image = image.copy()
try:
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
except cv2.error:
pass
return image
def npconvert(ob):
if isinstance(ob, generic):
return ob.item()
raise TypeError
def lift(fn):
def lifted(coll):
yield from map(fn, coll)
return lifted
def star(fn):
def starred(args):
return fn(*args)
return starred
def lstarkeep(fn, coll):
return list(starkeep(fn, coll))
def starkeep(fn, coll):
yield from keep(star(fn), coll)
def until(cond, func, *args, **kwargs):
return first(filter(cond, iterate(func, *args, **kwargs)))
def conj(x, xs):
return [x, *xs]
def rconj(xs, x):
return [*xs, x]
def make_merger_sentinel():
def no_new_mergers(records):
nonlocal number_of_records_so_far
number_of_records_now = len(records)
if number_of_records_now == number_of_records_so_far:
return True
else:
number_of_records_so_far = number_of_records_now
return False
number_of_records_so_far = -1
return no_new_mergers