Julius Unverfehrt a871fa3bd3 Pull request #19: Refactor evaluate
Merge in RR/cv-analysis from refactor-evaluate to master

Squashed commit of the following:

commit cde03a492452610322f8b7d3eb804a51afb76d81
Author: Julius Unverfehrt <julius.unverfehrt@iqser.com>
Date:   Fri Jul 22 12:37:36 2022 +0200

    add optional show analysis metadata dict

commit fb8bb9e2afa7767f2560f865516295be65f97f20
Author: Julius Unverfehrt <julius.unverfehrt@iqser.com>
Date:   Fri Jul 22 12:13:18 2022 +0200

    add script to evaluate runtime per page for all cv-analysis operations for multiple PDFs

commit 721e823e2ec38aae3fea51d01e2135fc8f228d94
Author: Julius Unverfehrt <julius.unverfehrt@iqser.com>
Date:   Fri Jul 22 10:30:31 2022 +0200

    refactor

commit a453753cfa477e162e5902ce191ded61cb678337
Author: Julius Unverfehrt <julius.unverfehrt@iqser.com>
Date:   Fri Jul 22 10:19:24 2022 +0200

    add logic to transform result coordinates accordingly to page rotation, update annotation script to use this logic

commit 71c09758d0fb763a2c38c6871e1d9bf51f2e7c41
Author: Julius Unverfehrt <julius.unverfehrt@iqser.com>
Date:   Thu Jul 21 15:57:49 2022 +0200

    introduce pipeline for image conversion, analysis and result formatting

commit aef252a41b9658dd0c4f55aa2d9f84de933586e0
Author: Julius Unverfehrt <julius.unverfehrt@iqser.com>
Date:   Thu Jul 21 15:57:38 2022 +0200

    introduce pipeline for image conversion, analysis and result formatting
2022-07-22 15:11:40 +02:00
2022-06-23 16:54:13 +02:00
2022-07-21 13:25:00 +02:00
2022-07-11 09:36:57 +02:00
2022-07-22 15:11:40 +02:00
2022-07-11 09:36:57 +02:00
2022-03-23 14:35:00 +01:00

cv-analysis — Visual (CV-Based) Document Parsing

This repository implements computer vision based approaches for detecting and parsing visual features such as tables or previous redactions in documents.

Installation

git clone ssh://git@git.iqser.com:2222/rr/cv-analysis.git
cd cv-analysis

python -m venv env
source env/bin/activate

pip install -e .
pip install -r requirements.txt

dvc pull

Usage

As an API

The module provided functions for the individual tasks that all return some kind of collection of points, depending on the specific task.

Redaction Detection (API)

The below snippet shows hot to find the outlines of previous redactions.

from cv_analysis.redaction_detection import find_redactions
import pdf2image 
import numpy as np


pdf_path = ...
page_index = ...

page = pdf2image.convert_from_path(pdf_path, first_page=page_index, last_page=page_index)[0]
page = np.array(page)

redaction_contours = find_redactions(page)

As a CLI Tool

Core API functionalities can be used through a CLI.

Table Parsing

The tables parsing utility detects and segments tables into individual cells.

python scripts/annotate.py data/test_pdf.pdf 7 --type table

The below image shows a parsed table, where each table cell has been detected individually.

Table Parsing Demonstration

Redaction Detection (CLI)

The redaction detection utility detects previous redactions in PDFs (filled black rectangles).

python scripts/annotate.py data/test_pdf.pdf 2 --type redaction

The below image shows the detected redactions with green outlines.

Redaction Detection Demonstration

Layout Parsing

The layout parsing utility detects elements such as paragraphs, tables and figures.

python scripts/annotate.py data/test_pdf.pdf 7 --type layout

The below image shows the detected layout elements on a page.

Layout Parsing Demonstration

Figure Detection

The figure detection utility detects figures specifically, which can be missed by the generic layout parsing utility.

python scripts/annotate.py data/test_pdf.pdf 3 --type figure

The below image shows the detected figure on a page.

Figure Detection Demonstration

Running as a service

Building

Build base image

bash setup/docker.sh

Build head image

docker build -f Dockerfile -t cv-analysis . --build-arg BASE_ROOT=""

Usage (service)

Shell 1

docker run --rm --net=host --rm cv-analysis

Shell 2

python scripts/client_mock.py --pdf_path /path/to/a/pdf
Description
Analysis container service for visual (CV-based) document parsing
Readme 58 MiB
2025-01-16 09:31:10 +01:00
Languages
Python 91.1%
Shell 3%
Makefile 2.4%
Dockerfile 2.3%
Nix 1.2%