non max supprs WIP

This commit is contained in:
Matthias Bisping 2022-02-03 23:56:04 +01:00
parent 2f1ec100b2
commit 289848871c
3 changed files with 190 additions and 15 deletions

View File

@ -9,6 +9,7 @@ from detr.models import build_model
from detr.test import get_args_parser, infer
from iteration_utilities import starfilter
from fb_detr.utils.box_merging import predictions_to_lpboxes
from fb_detr.utils.config import read_config
@ -62,31 +63,38 @@ class Predictor:
else:
return classes.tolist()
def __format_prediction(self, output: dict):
@staticmethod
def __format_probas(probas):
return probas.max( axis=1).tolist()
boxes, classes = itemgetter("bboxes", "classes")(output)
def __format_prediction(self, predictions: dict):
boxes, classes, probas = itemgetter("bboxes", "classes", "probas")(predictions)
if len(boxes):
boxes = self.__format_boxes(boxes)
classes = self.__format_classes(classes)
probas = self.__format_probas(probas)
else:
boxes, classes = [], []
boxes, classes, probas = [], [], []
output["bboxes"] = boxes
output["classes"] = classes
predictions["bboxes"] = boxes
predictions["classes"] = classes
predictions["probas"] = probas
return output
return predictions
def __filter_predictions_for_image(self, predictions):
boxes, classes = itemgetter("bboxes", "classes")(predictions)
boxes, classes, probas = itemgetter("bboxes", "classes", "probas")(predictions)
if boxes:
keep = map(lambda c: c != self.rejection_class, classes)
compressed = list(compress(zip(boxes, classes), keep))
boxes, classes = map(list, zip(*compressed)) if compressed else ([], [])
compressed = list(compress(zip(boxes, classes, probas), keep))
boxes, classes, probas = map(list, zip(*compressed)) if compressed else ([], [])
predictions["bboxes"] = boxes
predictions["classes"] = classes
predictions["probas"] = probas
return predictions
@ -106,16 +114,22 @@ class Predictor:
def format_predictions(self, outputs: Iterable):
return map(self.__format_prediction, outputs)
def predict(self, images, threshold=None, format_output=False):
def __merge_boxes(self, predictions):
predictions = predictions_to_lpboxes(predictions)
return predictions
def predict(self, images, threshold=None):
if not threshold:
threshold = read_config("threshold")
predictions = infer(images, self.model, read_config("device"), threshold)
predictions = self.format_predictions(predictions)
if self.rejection_class:
predictions = self.filter_predictions(predictions)
if format_output:
predictions = self.format_predictions(predictions)
if self.rejection_class:
predictions = self.filter_predictions(predictions)
predictions = self.__merge_boxes(predictions)
predictions = list(predictions)
return predictions

View File

@ -0,0 +1,161 @@
from collections import namedtuple
from itertools import starmap, combinations
from operator import attrgetter, itemgetter, truth
from frozendict import frozendict
import numpy as np
Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')
def compute_intersection(a, b): # returns None if rectangles don't intersect
a = Rectangle(*a.values())
b = Rectangle(*b.values())
dx = min(a.xmax, b.xmax) - max(a.xmin, b.xmin)
dy = min(a.ymax, b.ymax) - max(a.ymin, b.ymin)
intrs = dx*dy if (dx>=0) and (dy>=0) else 0
print("intrs", intrs)
return intrs
def compute_union(a, b):
def area(box):
r = Rectangle(*box.values())
return (r.xmax - r.xmin) * (r.ymax - r.ymin)
return area(a) + area(b)
def compute_iou(a, b):
return compute_intersection(a, b) / compute_union(a, b)
LPBox = namedtuple('LPBox', 'label proba box')
# def filter_contained(boxes, probas, iou_thresh=.9):
#
# def make_box_proba_pair(box, proba):
# return BoxProba(box.cpu().detach(), proba)
#
# current_boxes = set(starmap(make_box_proba_pair, zip(boxes, probas)))
# print(current_boxes)
#
#
# while True:
# print(len(current_boxes))
# remaining_boxes = set()
# for ap, bp in combinations(current_boxes, r=2):
# a = ap.box
# b = bp.box
# if iou(a, b) > iou_thresh:
# remaining_boxes.add(ap)
# else:
# remaining_boxes |= {ap, bp}
#
# if len(remaining_boxes) == len(current_boxes):
# break
# else:
# current_boxes = remaining_boxes.copy()
#
# return current_boxes
# def filter_boxes(image, outputs, threshold=0.3):
# # keep only predictions with confidence >= threshold
# probas = outputs.logits.softmax(-1)[0, :, :-1]
# keep = probas.max(-1).values > threshold
#
#
# boxes = outputs.pred_boxes[0, keep].cpu()
# probas = probas[keep]
#
# filtered_boxes = filter_contained(boxes, probas)
#
# boxes = list(map(attrgetter("box"), filtered_boxes))
# probas = list(map(attrgetter("proba"), filtered_boxes))
#
# return boxes, probas
def keep(a, b, iou_thresh):
iou = compute_iou(a.box, b.box)
print("iou", iou)
if iou > iou_thresh:
max_proba_box_idx = np.array(list(map(attrgetter("proba"), [a, b]))).argmax()
print("one")
return [a, b][max_proba_box_idx], None
else:
print("both")
return a, b
def filter_contained(lpboxes, iou_thresh=.1):
current_boxes = {*lpboxes}
while True:
print("current_boxes", len(current_boxes))
remaining = set()
for a, b in combinations(current_boxes, r=2):
print()
for keeping in filter(truth, keep(a, b, iou_thresh=iou_thresh)):
remaining.add(keeping)
print("remaining", len(remaining))
if len(remaining) == len(current_boxes):
break
current_boxes = {*remaining}
return remaining
def lpboxes_to_dict(lpboxes):
boxes = map(dict, map(attrgetter("box"), lpboxes))
classes = map(attrgetter("label"), lpboxes)
probas = map(attrgetter("proba"), lpboxes)
boxes, classes, probas = map(list, [boxes, classes, probas])
return {
"boxes": boxes,
"classes": classes,
"probas": probas
}
def page_predictions_to_lpboxes(predictions):
boxes, classes, probas = itemgetter("bboxes", "classes", "probas")(predictions)
boxes = map(frozendict, boxes)
lpboxes = list(starmap(LPBox, zip(classes, probas, boxes)))
lpboxes = filter_contained(lpboxes)
merged_predictions = lpboxes_to_dict(lpboxes)
predictions.update(merged_predictions)
return predictions
def predictions_to_lpboxes(predictions_per_page):
return map(page_predictions_to_lpboxes, predictions_per_page)

View File

@ -47,7 +47,7 @@ def main(args):
pdf = request.data
pages = pdf2image.convert_from_bytes(pdf)
predictions = predictor.predict(pages, format_output=True)
predictions = predictor.predict(pages)
return jsonify(list(predictions))