duplicate detection removal completed

This commit is contained in:
Matthias Bisping 2022-02-04 17:32:22 +01:00
parent ef2bab3003
commit 381fe2dbf5
2 changed files with 42 additions and 84 deletions

View File

@ -1,12 +1,17 @@
from collections import namedtuple
from itertools import starmap, combinations
from operator import attrgetter, itemgetter, truth
from operator import attrgetter, itemgetter
from frozendict import frozendict
import numpy as np
Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax')
def make_box(x1, y1, x2, y2):
keys = "x1", "y1", "x2", "y2"
return dict(zip(keys, [x1, y1, x2, y2]))
def compute_intersection(a, b): # returns None if rectangles don't intersect
a = Rectangle(*a.values())
@ -15,9 +20,7 @@ def compute_intersection(a, b): # returns None if rectangles don't intersect
dx = min(a.xmax, b.xmax) - max(a.xmin, b.xmin)
dy = min(a.ymax, b.ymax) - max(a.ymin, b.ymin)
intrs = dx*dy if (dx>=0) and (dy>=0) else 0
print("intrs", intrs)
return intrs
return dx*dy if (dx>=0) and (dy>=0) else 0
def compute_union(a, b):
@ -25,7 +28,7 @@ def compute_union(a, b):
r = Rectangle(*box.values())
return (r.xmax - r.xmin) * (r.ymax - r.ymin)
return area(a) + area(b)
return (area(a) + area(b)) - compute_intersection(a, b)
def compute_iou(a, b):
@ -35,88 +38,38 @@ def compute_iou(a, b):
LPBox = namedtuple('LPBox', 'label proba box')
# def filter_contained(boxes, probas, iou_thresh=.9):
#
# def make_box_proba_pair(box, proba):
# return BoxProba(box.cpu().detach(), proba)
#
# current_boxes = set(starmap(make_box_proba_pair, zip(boxes, probas)))
# print(current_boxes)
#
#
# while True:
# print(len(current_boxes))
# remaining_boxes = set()
# for ap, bp in combinations(current_boxes, r=2):
# a = ap.box
# b = bp.box
# if iou(a, b) > iou_thresh:
# remaining_boxes.add(ap)
# else:
# remaining_boxes |= {ap, bp}
#
# if len(remaining_boxes) == len(current_boxes):
# break
# else:
# current_boxes = remaining_boxes.copy()
#
# return current_boxes
def less_likely(a, b):
return min([a, b], key=attrgetter("proba"))
# def filter_boxes(image, outputs, threshold=0.3):
# # keep only predictions with confidence >= threshold
# probas = outputs.logits.softmax(-1)[0, :, :-1]
# keep = probas.max(-1).values > threshold
#
#
# boxes = outputs.pred_boxes[0, keep].cpu()
# probas = probas[keep]
#
# filtered_boxes = filter_contained(boxes, probas)
#
# boxes = list(map(attrgetter("box"), filtered_boxes))
# probas = list(map(attrgetter("proba"), filtered_boxes))
#
# return boxes, probas
def remove(a, b, iou_thresh):
def overlap_too_much(a, b, iou_thresh):
iou = compute_iou(a.box, b.box)
print("iou", iou)
if iou > iou_thresh:
max_proba_box_idx = np.array(list(map(attrgetter("proba"), [a, b]))).argmax()
print("one")
return [a, b][max_proba_box_idx], None
else:
print("both")
return None, None
return iou > iou_thresh
def filter_contained(lpboxes, iou_thresh=.1):
def remove_less_likely(a, b):
try:
ll = less_likely(a, b)
current_boxes.remove(ll)
except KeyError:
pass
current_boxes = {*lpboxes}
remaining = set()
while True:
print()
print("current_boxes", len(current_boxes))
n = len(current_boxes)
for a, b in combinations(current_boxes, r=2):
for keeping in filter(truth, remove(a, b, iou_thresh=iou_thresh)):
remaining.add(keeping)
try:
current_boxes.remove(keeping)
except:
pass
if len({a, b} & current_boxes) != 2:
continue
if overlap_too_much(a, b, iou_thresh):
remove_less_likely(a, b)
print("remaining", len(remaining))
if len(remaining) == len(current_boxes):
if n == len(current_boxes):
break
current_boxes = {*remaining}
remaining = set()
return remaining
return current_boxes
def lpboxes_to_dict(lpboxes):
@ -128,11 +81,12 @@ def lpboxes_to_dict(lpboxes):
boxes, classes, probas = map(list, [boxes, classes, probas])
return {
"boxes": boxes,
"bboxes": boxes,
"classes": classes,
"probas": probas
}
def page_predictions_to_lpboxes(predictions):
boxes, classes, probas = itemgetter("bboxes", "classes", "probas")(predictions)
boxes = map(frozendict, boxes)
@ -140,6 +94,7 @@ def page_predictions_to_lpboxes(predictions):
lpboxes = filter_contained(lpboxes)
merged_predictions = lpboxes_to_dict(lpboxes)
predictions.update(merged_predictions)
return predictions

View File

@ -4,20 +4,23 @@ from operator import itemgetter
import pdf2image
import requests
from PIL import ImageDraw
from PIL import ImageDraw, ImageFont
def draw_coco_box(draw: ImageDraw.Draw, bbox, klass):
def draw_coco_box(draw: ImageDraw.Draw, bbox, klass, proba):
x1, y1, x2, y2 = itemgetter("x1", "y1", "x2", "y2")(bbox)
draw.rectangle(((x1, y1), (x2, y2)), outline="red")
draw.text((x1, y1), text=klass, fill=(0, 0, 0, 100))
fnt = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", 30)
draw.text((x1, y2), text=f"{klass}: {proba:.2f}", fill=(0, 0, 0, 100), font=fnt)
def draw_coco_boxes(image, bboxes, classes):
def draw_coco_boxes(image, bboxes, classes, probas):
draw = ImageDraw.Draw(image)
for bbox, klass in zip(bboxes, classes):
draw_coco_box(draw, bbox, klass)
for bbox, klass, proba in zip(bboxes, classes, probas):
draw_coco_box(draw, bbox, klass, proba)
return image
@ -26,9 +29,9 @@ def annotate(pdf_path, predictions):
pages = pdf2image.convert_from_path(pdf_path)
for prd in predictions:
page_idx, boxes, classes = itemgetter("page_idx", "bboxes", "classes")(prd)
page_idx, boxes, classes, probas = itemgetter("page_idx", "bboxes", "classes", "probas")(prd)
page = pages[page_idx]
image = draw_coco_boxes(page, boxes, classes)
image = draw_coco_boxes(page, boxes, classes, probas)
image.save(f"/tmp/serv_out/{page_idx}.png")