Merge branch 'RES-534-update-pyinfra' into 'master'
feat(opentel,dynaconf): adapt new pyinfra Closes RES-534 See merge request redactmanager/image-classification-service!8
This commit is contained in:
commit
a024ddfcf7
@ -7,3 +7,25 @@ variables:
|
||||
NEXUS_PROJECT_DIR: red
|
||||
IMAGENAME: "${CI_PROJECT_NAME}"
|
||||
INTEGRATION_TEST_FILE: "${CI_PROJECT_ID}.pdf"
|
||||
|
||||
#################################
|
||||
# temp. disable integration tests, b/c they don't cover the CV analysis case yet
|
||||
trigger integration tests:
|
||||
rules:
|
||||
- when: never
|
||||
|
||||
release build:
|
||||
stage: release
|
||||
needs:
|
||||
- job: set custom version
|
||||
artifacts: true
|
||||
optional: true
|
||||
- job: calculate patch version
|
||||
artifacts: true
|
||||
optional: true
|
||||
- job: calculate minor version
|
||||
artifacts: true
|
||||
optional: true
|
||||
- job: build docker nexus
|
||||
artifacts: true
|
||||
#################################
|
||||
|
||||
11
Dockerfile
11
Dockerfile
@ -20,9 +20,9 @@ ENV PATH="$POETRY_HOME/bin:$PATH"
|
||||
RUN curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
COPY ./data ./data
|
||||
COPY ./scripts ./scripts
|
||||
COPY ./image_prediction ./image_prediction
|
||||
COPY pyproject.toml poetry.lock banner.txt config.yaml ./src ./
|
||||
COPY ./config ./config
|
||||
COPY ./src ./src
|
||||
COPY pyproject.toml poetry.lock banner.txt ./
|
||||
|
||||
RUN poetry config virtualenvs.create false && \
|
||||
poetry config installer.max-workers 10 && \
|
||||
@ -30,9 +30,10 @@ RUN poetry config virtualenvs.create false && \
|
||||
poetry config http-basic.${POETRY_SOURCE_REF_RESEARCH} ${USERNAME} ${TOKEN} && \
|
||||
poetry config repositories.${POETRY_SOURCE_REF_RED} ${PYPI_REGISTRY_RED} && \
|
||||
poetry config http-basic.${POETRY_SOURCE_REF_RED} ${USERNAME} ${TOKEN} && \
|
||||
poetry install --without=dev -vv --no-interaction --no-root
|
||||
poetry install --without=dev -vv --no-interaction
|
||||
|
||||
EXPOSE 5000
|
||||
EXPOSE 8080
|
||||
|
||||
CMD [ "python", "serve.py"]
|
||||
|
||||
CMD [ "python", "src/serve.py"]
|
||||
|
||||
@ -20,9 +20,10 @@ ENV PATH="$POETRY_HOME/bin:$PATH"
|
||||
RUN curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
COPY ./data ./data
|
||||
COPY ./image_prediction ./image_prediction
|
||||
COPY ./test ./test
|
||||
COPY pyproject.toml poetry.lock banner.txt config.yaml ./src ./
|
||||
COPY ./config ./config
|
||||
COPY ./src ./src
|
||||
COPY pyproject.toml poetry.lock banner.txt config.yaml./
|
||||
|
||||
RUN poetry config virtualenvs.create false && \
|
||||
poetry config installer.max-workers 10 && \
|
||||
|
||||
24
config.yaml
24
config.yaml
@ -1,24 +0,0 @@
|
||||
webserver:
|
||||
host: $SERVER_HOST|"127.0.0.1" # webserver address
|
||||
port: $SERVER_PORT|5000 # webserver port
|
||||
|
||||
service:
|
||||
logging_level: $LOGGING_LEVEL_ROOT|INFO # Logging level for service logger
|
||||
verbose: $VERBOSE|False # Service DOES NOT prints document processing progress to stdout
|
||||
batch_size: $BATCH_SIZE|16 # Number of images in memory simultaneously
|
||||
mlflow_run_id: $MLFLOW_RUN_ID|fabfb1f192c745369b88cab34471aba7 # The ID of the mlflow run to load the service_estimator from
|
||||
|
||||
# These variables control filters that are applied to either images, image metadata or service_estimator predictions.
|
||||
# The filter result values are reported in the service responses. For convenience the response to a request contains a
|
||||
# "filters.allPassed" field, which is set to false if any of the values returned by the filters did not meet its
|
||||
# specified required value.
|
||||
filters:
|
||||
image_to_page_quotient: # Image size to page size ratio (ratio of geometric means of areas)
|
||||
min: $MIN_REL_IMAGE_SIZE|0.05 # Minimum permissible
|
||||
max: $MAX_REL_IMAGE_SIZE|0.75 # Maximum permissible
|
||||
|
||||
image_width_to_height_quotient: # Image width to height ratio
|
||||
min: $MIN_IMAGE_FORMAT|0.1 # Minimum permissible
|
||||
max: $MAX_IMAGE_FORMAT|10 # Maximum permissible
|
||||
|
||||
min_confidence: $MIN_CONFIDENCE|0.5 # Minimum permissible prediction confidence
|
||||
44
config/pyinfra.toml
Normal file
44
config/pyinfra.toml
Normal file
@ -0,0 +1,44 @@
|
||||
[metrics.prometheus]
|
||||
enabled = true
|
||||
prefix = "redactmanager_image_service"
|
||||
|
||||
[tracing.opentelemetry]
|
||||
enabled = true
|
||||
endpoint = "http://otel-collector-opentelemetry-collector.otel-collector:4318/v1/traces"
|
||||
service_name = "redactmanager_image_service"
|
||||
exporter = "otlp"
|
||||
|
||||
[webserver]
|
||||
host = "0.0.0.0"
|
||||
port = 8080
|
||||
|
||||
[rabbitmq]
|
||||
host = "localhost"
|
||||
port = 5672
|
||||
username = ""
|
||||
password = ""
|
||||
heartbeat = 60
|
||||
# Has to be a divider of heartbeat, and shouldn't be too big, since only in these intervals queue interactions happen (like receiving new messages)
|
||||
# This is also the minimum time the service needs to process a message
|
||||
connection_sleep = 5
|
||||
input_queue = "request_queue"
|
||||
output_queue = "response_queue"
|
||||
dead_letter_queue = "dead_letter_queue"
|
||||
|
||||
[storage]
|
||||
backend = "s3"
|
||||
|
||||
[storage.s3]
|
||||
bucket = "redaction"
|
||||
endpoint = "http://127.0.0.1:9000"
|
||||
key = ""
|
||||
secret = ""
|
||||
region = "eu-central-1"
|
||||
|
||||
[storage.azure]
|
||||
container = "redaction"
|
||||
connection_string = ""
|
||||
|
||||
[storage.tenant_server]
|
||||
public_key = ""
|
||||
endpoint = "http://tenant-user-management:8081/internal-api/tenants"
|
||||
28
config/settings.toml
Normal file
28
config/settings.toml
Normal file
@ -0,0 +1,28 @@
|
||||
[logging]
|
||||
level = "INFO"
|
||||
|
||||
[service]
|
||||
# Print document processing progress to stdout
|
||||
verbose = false
|
||||
batch_size = 16
|
||||
mlflow_run_id = "fabfb1f192c745369b88cab34471aba7"
|
||||
|
||||
# These variables control filters that are applied to either images, image metadata or service_estimator predictions.
|
||||
# The filter result values are reported in the service responses. For convenience the response to a request contains a
|
||||
# "filters.allPassed" field, which is set to false if any of the values returned by the filters did not meet its
|
||||
# specified required value.
|
||||
[filters]
|
||||
# Minimum permissible prediction confidence
|
||||
min_confidence = 0.5
|
||||
|
||||
# Image size to page size ratio (ratio of geometric means of areas)
|
||||
[filters.image_to_page_quotient]
|
||||
min = 0.05
|
||||
max = 0.75
|
||||
|
||||
# Image width to height ratio
|
||||
[filters.image_width_to_height_quotient]
|
||||
min = 0.1
|
||||
max = 10
|
||||
|
||||
|
||||
@ -1,46 +0,0 @@
|
||||
"""Implements a config object with dot-indexing syntax."""
|
||||
|
||||
|
||||
from envyaml import EnvYAML
|
||||
|
||||
from image_prediction.locations import CONFIG_FILE
|
||||
|
||||
|
||||
def _get_item_and_maybe_make_dotindexable(container, item):
|
||||
ret = container[item]
|
||||
return DotIndexable(ret) if isinstance(ret, dict) else ret
|
||||
|
||||
|
||||
class DotIndexable:
|
||||
def __init__(self, x):
|
||||
self.x = x
|
||||
|
||||
def get(self, item, default=None):
|
||||
try:
|
||||
return _get_item_and_maybe_make_dotindexable(self.x, item)
|
||||
except KeyError:
|
||||
return default
|
||||
|
||||
def __getattr__(self, item):
|
||||
return _get_item_and_maybe_make_dotindexable(self.x, item)
|
||||
|
||||
def __repr__(self):
|
||||
return self.x.__repr__()
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.__getattr__(item)
|
||||
|
||||
|
||||
class Config:
|
||||
def __init__(self, config_path):
|
||||
self.__config = EnvYAML(config_path)
|
||||
|
||||
def __getattr__(self, item):
|
||||
if item in self.__config:
|
||||
return _get_item_and_maybe_make_dotindexable(self.__config, item)
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.__getattr__(item)
|
||||
|
||||
|
||||
CONFIG = Config(CONFIG_FILE)
|
||||
@ -1,16 +0,0 @@
|
||||
"""Defines constant paths relative to the module root path."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
MODULE_DIR = Path(__file__).resolve().parents[0]
|
||||
PACKAGE_ROOT_DIR = MODULE_DIR.parents[0]
|
||||
|
||||
CONFIG_FILE = PACKAGE_ROOT_DIR / "config.yaml"
|
||||
BANNER_FILE = PACKAGE_ROOT_DIR / "banner.txt"
|
||||
|
||||
DATA_DIR = PACKAGE_ROOT_DIR / "data"
|
||||
MLRUNS_DIR = str(DATA_DIR / "mlruns")
|
||||
|
||||
TEST_DIR = PACKAGE_ROOT_DIR / "test"
|
||||
TEST_DATA_DIR = TEST_DIR / "data"
|
||||
TEST_DATA_DIR_DVC = TEST_DIR / "data.dvc"
|
||||
@ -1,27 +0,0 @@
|
||||
import logging
|
||||
|
||||
from image_prediction.config import CONFIG
|
||||
|
||||
|
||||
def make_logger_getter():
|
||||
logger = logging.getLogger("imclf")
|
||||
logger.propagate = False
|
||||
|
||||
handler = logging.StreamHandler()
|
||||
handler.setLevel(CONFIG.service.logging_level)
|
||||
|
||||
log_format = "%(asctime)s %(levelname)-8s %(message)s"
|
||||
formatter = logging.Formatter(log_format, datefmt="%Y-%m-%d %H:%M:%S")
|
||||
|
||||
handler.setFormatter(formatter)
|
||||
logger.addHandler(handler)
|
||||
|
||||
logger.setLevel(CONFIG.service.logging_level)
|
||||
|
||||
def get_logger():
|
||||
return logger
|
||||
|
||||
return get_logger
|
||||
|
||||
|
||||
get_logger = make_logger_getter()
|
||||
3145
poetry.lock
generated
3145
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -1,14 +1,14 @@
|
||||
[tool.poetry]
|
||||
name = "image-classification-service"
|
||||
version = "1.34.0"
|
||||
version = "2.0.0"
|
||||
description = ""
|
||||
authors = ["Team Research <research@knecon.com>"]
|
||||
readme = "README.md"
|
||||
packages = [{ include = "image_prediction" }]
|
||||
packages = [{ include = "image_prediction", from = "src" }]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<3.11"
|
||||
pyinfra = { version = "1.10.0", source = "gitlab-research" }
|
||||
pyinfra = { version = "2.0.0", source = "gitlab-research" }
|
||||
kn-utils = { version = "0.2.7", source = "gitlab-research" }
|
||||
dvc = "^2.34.0"
|
||||
dvc-ssh = "^2.20.0"
|
||||
|
||||
7
src/image_prediction/config.py
Normal file
7
src/image_prediction/config.py
Normal file
@ -0,0 +1,7 @@
|
||||
from pathlib import Path
|
||||
|
||||
from pyinfra.config.loader import load_settings
|
||||
|
||||
from image_prediction.locations import PROJECT_ROOT_DIR
|
||||
|
||||
CONFIG = load_settings(root_path=PROJECT_ROOT_DIR, settings_path="config")
|
||||
@ -92,12 +92,12 @@ def get_images_on_page(doc, metadata):
|
||||
|
||||
|
||||
def extract_valid_metadata(doc: fitz.fitz.Document, page: fitz.fitz.Page):
|
||||
return compose(
|
||||
list,
|
||||
partial(add_alpha_channel_info, doc),
|
||||
filter_valid_metadata,
|
||||
get_metadata_for_images_on_page,
|
||||
)(page)
|
||||
metadata = get_metadata_for_images_on_page(page)
|
||||
metadata = filter_valid_metadata(metadata)
|
||||
metadata = add_alpha_channel_info(doc, metadata)
|
||||
|
||||
return list(metadata)
|
||||
|
||||
|
||||
|
||||
def get_metadata_for_images_on_page(page: fitz.Page):
|
||||
@ -207,7 +207,11 @@ def add_alpha_channel_info(doc, metadata):
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def load_image_handle_from_xref(doc, xref):
|
||||
return doc.extract_image(xref)
|
||||
try:
|
||||
return doc.extract_image(xref)
|
||||
except ValueError:
|
||||
logger.debug(f"Xref {xref} is invalid, skipping extraction ...")
|
||||
return
|
||||
|
||||
|
||||
rounder = rcompose(round, int)
|
||||
18
src/image_prediction/locations.py
Normal file
18
src/image_prediction/locations.py
Normal file
@ -0,0 +1,18 @@
|
||||
"""Defines constant paths relative to the module root path."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
# FIXME: move these paths to config, only depending on 'ROOT_PATH' environment variable.
|
||||
MODULE_DIR = Path(__file__).resolve().parents[0]
|
||||
PACKAGE_ROOT_DIR = MODULE_DIR.parents[0]
|
||||
PROJECT_ROOT_DIR = PACKAGE_ROOT_DIR.parents[0]
|
||||
|
||||
CONFIG_FILE = PROJECT_ROOT_DIR / "config" / "settings.toml"
|
||||
BANNER_FILE = PROJECT_ROOT_DIR / "banner.txt"
|
||||
|
||||
DATA_DIR = PROJECT_ROOT_DIR / "data"
|
||||
MLRUNS_DIR = str(DATA_DIR / "mlruns")
|
||||
|
||||
TEST_DIR = PROJECT_ROOT_DIR / "test"
|
||||
TEST_DATA_DIR = TEST_DIR / "data"
|
||||
TEST_DATA_DIR_DVC = TEST_DIR / "data.dvc"
|
||||
4
src/image_prediction/utils/logger.py
Normal file
4
src/image_prediction/utils/logger.py
Normal file
@ -0,0 +1,4 @@
|
||||
import kn_utils
|
||||
|
||||
# TODO: remove this module and use the `get_logger` function from the `kn_utils` package.
|
||||
get_logger = kn_utils.get_logger
|
||||
29
src/serve.py
29
src/serve.py
@ -1,17 +1,16 @@
|
||||
from image_prediction import logger
|
||||
from image_prediction.config import Config
|
||||
from image_prediction.locations import CONFIG_FILE
|
||||
from sys import stdout
|
||||
|
||||
from kn_utils.logging import logger
|
||||
from pyinfra.examples import start_standard_queue_consumer
|
||||
from pyinfra.queue.callback import make_download_process_upload_callback
|
||||
|
||||
from image_prediction.config import CONFIG
|
||||
from image_prediction.pipeline import load_pipeline
|
||||
from image_prediction.utils.banner import load_banner
|
||||
from image_prediction.utils.process_wrapping import wrap_in_process
|
||||
from pyinfra import config
|
||||
from pyinfra.payload_processing.processor import make_payload_processor
|
||||
from pyinfra.queue.queue_manager import QueueManager
|
||||
|
||||
PYINFRA_CONFIG = config.get_config()
|
||||
IMAGE_CONFIG = Config(CONFIG_FILE)
|
||||
|
||||
logger.setLevel(PYINFRA_CONFIG.logging_level_root)
|
||||
logger.remove()
|
||||
logger.add(sink=stdout, level=CONFIG.logging.level)
|
||||
|
||||
|
||||
# A component of the processing pipeline (probably tensorflow) does not release allocated memory (see RED-4206).
|
||||
@ -19,18 +18,16 @@ logger.setLevel(PYINFRA_CONFIG.logging_level_root)
|
||||
# Workaround: Manage Memory with the operating system, by wrapping the processing in a sub-process.
|
||||
# FIXME: Find more fine-grained solution or if the problem occurs persistently for python services,
|
||||
@wrap_in_process
|
||||
def process_data(data: bytes) -> list:
|
||||
pipeline = load_pipeline(verbose=IMAGE_CONFIG.service.verbose, batch_size=IMAGE_CONFIG.service.batch_size)
|
||||
def process_data(data: bytes, _message: dict) -> list:
|
||||
pipeline = load_pipeline(verbose=CONFIG.service.verbose, batch_size=CONFIG.service.batch_size)
|
||||
return list(pipeline(data))
|
||||
|
||||
|
||||
def main():
|
||||
logger.info(load_banner())
|
||||
|
||||
process_payload = make_payload_processor(process_data, config=PYINFRA_CONFIG)
|
||||
|
||||
queue_manager = QueueManager(PYINFRA_CONFIG)
|
||||
queue_manager.start_consuming(process_payload)
|
||||
callback = make_download_process_upload_callback(process_data, CONFIG)
|
||||
start_standard_queue_consumer(callback, CONFIG)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -1,10 +1,3 @@
|
||||
import logging
|
||||
|
||||
import pytest
|
||||
|
||||
from image_prediction.utils import get_logger
|
||||
|
||||
|
||||
pytest_plugins = [
|
||||
"test.fixtures.extractor",
|
||||
"test.fixtures.image",
|
||||
@ -17,14 +10,5 @@ pytest_plugins = [
|
||||
"test.fixtures.parameters",
|
||||
"test.fixtures.pdf",
|
||||
"test.fixtures.target",
|
||||
"test.unit_tests.image_stitching_test"
|
||||
"test.unit_tests.image_stitching_test",
|
||||
]
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mute_logger():
|
||||
logger = get_logger()
|
||||
level = logger.level
|
||||
logger.setLevel(logging.CRITICAL + 1)
|
||||
yield
|
||||
logger.setLevel(level)
|
||||
|
||||
@ -1,48 +0,0 @@
|
||||
import tempfile
|
||||
|
||||
import pytest
|
||||
import yaml
|
||||
|
||||
from image_prediction.config import Config
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def config_file_content():
|
||||
return {"A": [{"B": [1, 2]}, {"C": 3}, 4], "D": {"E": {"F": True}}}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def config(config_file_content):
|
||||
with tempfile.NamedTemporaryFile(suffix=".yaml", mode="w") as f:
|
||||
yaml.dump(config_file_content, f, default_flow_style=False)
|
||||
yield Config(f.name)
|
||||
|
||||
|
||||
def test_dot_access_key_exists(config):
|
||||
assert config.A == [{"B": [1, 2]}, {"C": 3}, 4]
|
||||
assert config.D.E["F"]
|
||||
|
||||
|
||||
def test_access_key_exists(config):
|
||||
assert config["A"] == [{"B": [1, 2]}, {"C": 3}, 4]
|
||||
assert config["A"][0] == {"B": [1, 2]}
|
||||
assert config["A"][0]["B"] == [1, 2]
|
||||
assert config["A"][0]["B"][0] == 1
|
||||
|
||||
|
||||
def test_dot_access_key_does_not_exists(config):
|
||||
assert config.B is None
|
||||
|
||||
|
||||
def test_access_key_does_not_exists(config):
|
||||
assert config["B"] is None
|
||||
|
||||
|
||||
def test_get_method_returns_key_if_key_does_exist(config):
|
||||
dot_indexable = config.D.E
|
||||
assert dot_indexable.get("F", "default_value") is True
|
||||
|
||||
|
||||
def test_get_method_returns_default_if_key_does_not_exist(config):
|
||||
dot_indexable = config.D.E
|
||||
assert dot_indexable.get("X", "default_value") == "default_value"
|
||||
@ -1,48 +0,0 @@
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
||||
from image_prediction.exceptions import IntentionalTestException
|
||||
from image_prediction.flask import make_prediction_server
|
||||
|
||||
|
||||
def predict_fn(x: bytes):
|
||||
x = int(x.decode())
|
||||
if x == 42:
|
||||
return True
|
||||
else:
|
||||
raise IntentionalTestException("This is intended.")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def server():
|
||||
server = make_prediction_server(predict_fn)
|
||||
server.config.update({"TESTING": True})
|
||||
return server
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def client(server):
|
||||
return server.test_client()
|
||||
|
||||
|
||||
def test_server_predict_success(client, mute_logger):
|
||||
response = client.post("/predict", data="42")
|
||||
assert json.loads(response.data)
|
||||
|
||||
|
||||
def test_server_predict_failure(client, mute_logger):
|
||||
response = client.post("/predict", data="13")
|
||||
assert response.status_code == 500
|
||||
|
||||
|
||||
def test_server_health_check(client):
|
||||
response = client.get("/health")
|
||||
assert response.status_code == 200
|
||||
assert response.json == "OK"
|
||||
|
||||
|
||||
def test_server_ready_check(client):
|
||||
response = client.get("/ready")
|
||||
assert response.status_code == 200
|
||||
assert response.json == "OK"
|
||||
Loading…
x
Reference in New Issue
Block a user