Compare commits

..

No commits in common. "master" and "2.16.0" have entirely different histories.

7 changed files with 29 additions and 403 deletions

View File

@ -4,7 +4,7 @@ level = "INFO"
[service]
# Print document processing progress to stdout
verbose = false
batch_size = 6
batch_size = 16
image_stiching_tolerance = 1 # in pixels
mlflow_run_id = "fabfb1f192c745369b88cab34471aba7"
@ -36,7 +36,4 @@ max = 10
[filters.overrides.signature.image_to_page_quotient]
max = 0.4
[filters.overrides.logo.image_to_page_quotient]
min = 0.06

345
poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "image-classification-service"
version = "2.17.0"
version = "2.16.0"
description = ""
authors = ["Team Research <research@knecon.com>"]
readme = "README.md"
@ -10,8 +10,8 @@ packages = [{ include = "image_prediction", from = "src" }]
python = ">=3.10,<3.11"
# FIXME: This should be recent pyinfra, but the recent protobuf packages are not compatible with tensorflow 2.9.0, also
# see RED-9948.
pyinfra = { version = "3.4.2", source = "gitlab-research" }
kn-utils = { version = ">=0.4.0", source = "gitlab-research" }
pyinfra = { version = "3.3.5", source = "gitlab-research" }
kn-utils = { version = ">=0.3.2,<0.4.0", source = "gitlab-research" }
dvc = "^2.34.0"
dvc-ssh = "^2.20.0"
dvc-azure = "^2.21.2"

View File

@ -10,8 +10,6 @@ from image_prediction.utils.pdf_annotation import annotate_pdf
logger = get_logger()
logger.setLevel("DEBUG")
def parse_args():
parser = argparse.ArgumentParser()

View File

@ -1,7 +1,6 @@
import os
from functools import lru_cache, partial
from itertools import chain, tee
from typing import Iterable, Any
from funcy import rcompose, first, compose, second, chunks, identity, rpartial
from kn_utils.logging import logger
@ -55,7 +54,7 @@ class Pipeline:
join = compose(starlift(lambda prd, rpr, mdt: {"classification": prd, **mdt, "representation": rpr}), star(zip))
# />--classify--\
# --extract-->--split--+->--encode---->+--join-->reformat-->filter_duplicates
# --extract-->--split--+->--encode---->+--join-->reformat
# \>--identity--/
self.pipe = rcompose(
@ -64,7 +63,6 @@ class Pipeline:
pairwise_apply(classify, represent, identity), # ... apply functions to the streams pairwise
join, # ... the streams by zipping
reformat, # ... the items
filter_duplicates, # ... filter out duplicate images
)
def __call__(self, pdf: bytes, page_range: range = None):
@ -74,32 +72,3 @@ class Pipeline:
unit=" images",
disable=not self.verbose,
)
def filter_duplicates(metadata: Iterable[dict[str, Any]]) -> Iterable[dict[str, Any]]:
"""Filter out duplicate images from the `position` (image coordinates) and `page`, preferring the one with
`allPassed` set to True.
See RED-10765 (RM-241): Removed redactions reappear for why this is necessary.
"""
keep = dict()
for image_meta in metadata:
key: tuple[int, int, int, int, int] = (
image_meta["position"]["x1"],
image_meta["position"]["x2"],
image_meta["position"]["y1"],
image_meta["position"]["y2"],
image_meta["position"]["pageNumber"],
)
if key in keep:
logger.warning(
f"Duplicate image found: x1={key[0]}, x2={key[1]}, y1={key[2]}, y2={key[3]}, pageNumber={key[4]}"
)
if image_meta["filters"]["allPassed"]:
logger.warning("Setting the image with allPassed flag set to True")
keep[key] = image_meta
else:
logger.warning("Keeping the previous image since the current image has allPassed flag set to False")
else:
keep[key] = image_meta
yield from keep.values()

View File

@ -1,5 +1,5 @@
outs:
- md5: 08bf8a63f04b3f19f859008556699708.dir
size: 7979836
nfiles: 7
- md5: ab352d3b2c62ce2293cafb57c1b41b01.dir
size: 7469082
nfiles: 6
path: data

View File

@ -1,35 +0,0 @@
from pathlib import Path
from image_prediction.config import CONFIG
from image_prediction.pipeline import load_pipeline
def test_all_duplicate_images_are_filtered():
"""See RED-10765 (RM-241): Removed redactions reappear."""
pdf_path = (
Path(__file__).parents[1]
/ "data"
/ "RED-10765"
/ "RM-241-461c90d6d6dc0416ad5f0b05feef4dfc.UNTOUCHED_shortened.pdf"
)
pdf_bytes = pdf_path.read_bytes()
pipeline = load_pipeline(verbose=True, batch_size=CONFIG.service.batch_size)
predictions = list(pipeline(pdf_bytes))
seen = set()
for prediction in predictions:
key = (
prediction["position"]["x1"],
prediction["position"]["x2"],
prediction["position"]["y1"],
prediction["position"]["y2"],
prediction["position"]["pageNumber"],
)
assert key not in seen, f"Duplicate found: {key}"
seen.add(key)
all_passed = sum(1 for prediction in predictions if prediction["filters"]["allPassed"])
assert all_passed == 1, f"Expected 1 image with allPassed flag set to True, but got {all_passed}"
assert len(predictions) == 177, f"Expected 177 images, but got {len(predictions)}"