Merge in RR/fb-detr from add-debug-progress-bar to master
Squashed commit of the following:
commit 3449be1b46f73a5e9ae3719ed2821a1b7faca9e4
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date: Wed Feb 23 10:26:47 2022 +0100
refactoring; added VERBOSE flag to config
commit e50234e205dfd7a40aaf7981da85e28048d9efba
Merge: 89703ca f6c51be
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date: Wed Feb 23 09:45:33 2022 +0100
Merge branch 'config_changes' into add-debug-progress-bar
commit f6c51beeaa952c18c80b7af6b7a46b9de8f521c3
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date: Wed Feb 23 09:44:00 2022 +0100
added env var
commit 89703caa776f0fad55757ab22568e45949b2b310
Author: Julius Unverfehrt <Julius.Unverfehrt@iqser.com>
Date: Wed Feb 23 08:28:52 2022 +0100
optional debug progress bar added
163 lines
5.1 KiB
Python
163 lines
5.1 KiB
Python
import argparse
|
|
import logging
|
|
from itertools import compress, starmap, chain
|
|
from operator import itemgetter
|
|
from pathlib import Path
|
|
from typing import Iterable
|
|
|
|
import torch
|
|
from iteration_utilities import starfilter
|
|
from tqdm import tqdm
|
|
|
|
from detr.models import build_model
|
|
from detr.prediction import get_args_parser, infer
|
|
from fb_detr.config import CONFIG
|
|
from fb_detr.utils.non_max_supprs import greedy_non_max_supprs
|
|
from fb_detr.utils.stream import stream_pages, chunk_iterable, get_page_count
|
|
|
|
|
|
def load_model(checkpoint_path):
|
|
|
|
parser = argparse.ArgumentParser(parents=[get_args_parser()])
|
|
args = parser.parse_args()
|
|
|
|
if args.output_dir:
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
device = torch.device(CONFIG.estimator.device)
|
|
|
|
model, _, _ = build_model(args)
|
|
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
model.load_state_dict(checkpoint["model"])
|
|
|
|
model.to(device)
|
|
|
|
return model
|
|
|
|
|
|
class Predictor:
|
|
def __init__(self, checkpoint_path, classes=None, rejection_class=None):
|
|
self.model = load_model(checkpoint_path)
|
|
self.classes = classes
|
|
self.rejection_class = rejection_class
|
|
|
|
@staticmethod
|
|
def __format_boxes(boxes):
|
|
|
|
keys = "x1", "y1", "x2", "y2"
|
|
|
|
x1s = boxes[:, 0].tolist()
|
|
y1s = boxes[:, 1].tolist()
|
|
x2s = boxes[:, 2].tolist()
|
|
y2s = boxes[:, 3].tolist()
|
|
|
|
boxes = [dict(zip(keys, vs)) for vs in zip(x1s, y1s, x2s, y2s)]
|
|
|
|
return boxes
|
|
|
|
@staticmethod
|
|
def __normalize_to_list(maybe_multiple):
|
|
return maybe_multiple if isinstance(maybe_multiple, tuple) else tuple([maybe_multiple])
|
|
|
|
def __format_classes(self, classes):
|
|
if self.classes:
|
|
return self.__normalize_to_list(itemgetter(*classes.tolist())(self.classes))
|
|
else:
|
|
return classes.tolist()
|
|
|
|
@staticmethod
|
|
def __format_probas(probas):
|
|
return probas.max(axis=1).tolist()
|
|
|
|
def __format_prediction(self, predictions: dict):
|
|
|
|
boxes, classes, probas = itemgetter("bboxes", "classes", "probas")(predictions)
|
|
|
|
if len(boxes):
|
|
boxes = self.__format_boxes(boxes)
|
|
classes = self.__format_classes(classes)
|
|
probas = self.__format_probas(probas)
|
|
else:
|
|
boxes, classes, probas = [], [], []
|
|
|
|
predictions["bboxes"] = boxes
|
|
predictions["classes"] = classes
|
|
predictions["probas"] = probas
|
|
|
|
return predictions
|
|
|
|
def __filter_predictions_for_image(self, predictions):
|
|
|
|
boxes, classes, probas = itemgetter("bboxes", "classes", "probas")(predictions)
|
|
|
|
if boxes:
|
|
keep = map(lambda c: c != self.rejection_class, classes)
|
|
compressed = list(compress(zip(boxes, classes, probas), keep))
|
|
boxes, classes, probas = map(list, zip(*compressed)) if compressed else ([], [], [])
|
|
predictions["bboxes"] = boxes
|
|
predictions["classes"] = classes
|
|
predictions["probas"] = probas
|
|
|
|
return predictions
|
|
|
|
def filter_predictions(self, predictions):
|
|
def detections_present(_, prediction):
|
|
return bool(prediction["classes"])
|
|
|
|
# TODO: set page_idx even when not filtering
|
|
def build_return_dict(page_idx, predictions):
|
|
return {"page_idx": page_idx, **predictions}
|
|
|
|
filtered_rejections = map(self.__filter_predictions_for_image, predictions)
|
|
filtered_no_detections = starfilter(detections_present, enumerate(filtered_rejections))
|
|
filtered_no_detections = starmap(build_return_dict, filtered_no_detections)
|
|
|
|
return filtered_no_detections
|
|
|
|
def format_predictions(self, outputs: Iterable):
|
|
return map(self.__format_prediction, outputs)
|
|
|
|
def __non_max_supprs(self, predictions):
|
|
predictions = map(greedy_non_max_supprs, predictions)
|
|
return predictions
|
|
|
|
def predict(self, images, threshold=None):
|
|
|
|
if not threshold:
|
|
threshold = CONFIG.estimator.threshold
|
|
|
|
predictions = infer(images, self.model, CONFIG.estimator.device, threshold)
|
|
predictions = self.format_predictions(predictions)
|
|
if self.rejection_class:
|
|
predictions = self.filter_predictions(predictions)
|
|
|
|
predictions = self.__non_max_supprs(predictions)
|
|
|
|
predictions = list(predictions)
|
|
|
|
return predictions
|
|
|
|
def predict_pdf(self, pdf: bytes):
|
|
def progress(generator):
|
|
|
|
page_count = get_page_count(pdf)
|
|
batch_count = int(page_count / CONFIG.service.batch_size)
|
|
|
|
yield from tqdm(
|
|
generator, total=batch_count, position=1, leave=True
|
|
) if CONFIG.service.verbose else generator
|
|
|
|
def predict_batch(batch_idx, batch):
|
|
predictions = self.predict(batch)
|
|
for p in predictions:
|
|
p["page_idx"] += batch_idx
|
|
|
|
return predictions
|
|
|
|
page_stream = stream_pages(pdf)
|
|
page_batches = chunk_iterable(page_stream, CONFIG.service.batch_size)
|
|
predictions = list(chain(*starmap(predict_batch, progress(enumerate(page_batches)))))
|
|
|
|
return predictions
|