Matthias Bisping a9d60654f5 Pull request #3: Refactoring
Merge in RR/image-prediction from refactoring to master

Squashed commit of the following:

commit fc4e2efac113f2e307fdbc091e0a4f4e3e5729d3
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Wed Mar 16 14:21:05 2022 +0100

    applied black

commit 3baabf5bc0b04347af85dafbb056f134258d9715
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Wed Mar 16 14:20:30 2022 +0100

    added banner

commit 30e871cfdc79d0ff2e0c26d1b858e55ab1b0453f
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Wed Mar 16 14:02:26 2022 +0100

    rename logger

commit d76fefd3ff0c4425defca4db218ce4a84c6053f3
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Wed Mar 16 14:00:39 2022 +0100

    logger refactoring

commit 0e004cbd21ab00b8804901952405fa870bf48e9c
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Wed Mar 16 14:00:08 2022 +0100

    logger refactoring

commit 49e113f8d85d7973b73f664779906a1347d1522d
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Wed Mar 16 13:25:08 2022 +0100

    refactoring

commit 7ec3d52e155cb83bed8804d2fee4f5bdf54fb59b
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Wed Mar 16 13:21:52 2022 +0100

    applied black

commit 06ea0be8aa9344e11b9d92fd526f2b73061bc736
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Wed Mar 16 13:21:20 2022 +0100

    refactoring
2022-03-16 15:07:30 +01:00

123 lines
5.2 KiB
Python

from itertools import chain
from operator import itemgetter
from typing import List, Dict, Iterable
import numpy as np
from image_prediction.config import CONFIG
from image_prediction.locations import MLRUNS_DIR, BASE_WEIGHTS
from image_prediction.utils import temporary_pdf_file, get_logger
from incl.redai_image.redai.redai.backend.model.model_handle import ModelHandle
from incl.redai_image.redai.redai.backend.pdf.image_extraction import extract_and_stitch
from incl.redai_image.redai.redai.utils.mlflow_reader import MlflowModelReader
from incl.redai_image.redai.redai.utils.shared import chunk_iterable
logger = get_logger()
class Predictor:
"""`ModelHandle` wrapper. Forwards to wrapped model handle for prediction and produces structured output that is
interpretable independently of the wrapped model (e.g. with regard to a .classes_ attribute).
"""
def __init__(self, model_handle: ModelHandle = None):
"""Initializes a ServiceEstimator.
Args:
model_handle: ModelHandle object to forward to for prediction. By default, a model handle is loaded from the
mlflow database via CONFIG.service.run_id.
"""
try:
if model_handle is None:
reader = MlflowModelReader(run_id=CONFIG.service.run_id, mlruns_dir=MLRUNS_DIR)
self.model_handle = reader.get_model_handle(BASE_WEIGHTS)
else:
self.model_handle = model_handle
self.classes = self.model_handle.model.classes_
self.classes_readable = np.array(self.model_handle.classes)
self.classes_readable_aligned = self.classes_readable[self.classes[list(range(len(self.classes)))]]
except Exception as e:
logger.info(f"Service estimator initialization failed: {e}")
def __make_predictions_human_readable(self, probs: np.ndarray) -> List[Dict[str, float]]:
"""Translates an n x m matrix of probabilities over classes into an n-element list of mappings from classes to
probabilities.
Args:
probs: probability matrix (items x classes)
Returns:
list of mappings from classes to probabilities.
"""
classes = np.argmax(probs, axis=1)
classes = self.classes[classes]
classes_readable = [self.model_handle.classes[c] for c in classes]
return classes_readable
def predict(self, images: List, probabilities: bool = False, **kwargs):
"""Gathers predictions for list of images. Assigns each image a class and optionally a probability distribution
over all classes.
Args:
images (List[PIL.Image]) : Images to gather predictions for.
probabilities: Whether to return dictionaries of the following form instead of strings:
{
"class": predicted class,
"probabilities": {
"class 1" : class 1 probability,
"class 2" : class 2 probability,
...
}
}
Returns:
By default the return value is a list of classes (meaningful class name strings). Alternatively a list of
dictionaries with an additional probability field for estimated class probabilities per image can be
returned.
"""
X = self.model_handle.prep_images(list(images))
probs_per_item = self.model_handle.model.predict_proba(X, **kwargs).astype(float)
classes = self.__make_predictions_human_readable(probs_per_item)
class2prob_per_item = [dict(zip(self.classes_readable_aligned, probs)) for probs in probs_per_item]
class2prob_per_item = [
dict(sorted(c2p.items(), key=itemgetter(1), reverse=True)) for c2p in class2prob_per_item
]
predictions = [{"class": c, "probabilities": c2p} for c, c2p in zip(classes, class2prob_per_item)]
return predictions if probabilities else classes
def predict_pdf(self, pdf, verbose=False):
with temporary_pdf_file(pdf) as pdf_path:
image_metadata_pairs = self.__extract_image_metadata_pairs(pdf_path, verbose=verbose)
return self.__predict_images(image_metadata_pairs)
def __predict_images(self, image_metadata_pairs: Iterable, batch_size: int = CONFIG.service.batch_size):
def process_chunk(chunk):
images, metadata = zip(*chunk)
predictions = self.predict(images, probabilities=True)
return predictions, metadata
def predict(image_metadata_pair_generator):
chunks = chunk_iterable(image_metadata_pair_generator, n=batch_size)
return map(chain.from_iterable, zip(*map(process_chunk, chunks)))
try:
predictions, metadata = predict(image_metadata_pairs)
return predictions, metadata
except ValueError:
return [], []
@staticmethod
def __extract_image_metadata_pairs(pdf_path: str, **kwargs):
def image_is_large_enough(metadata: dict):
x1, x2, y1, y2 = itemgetter("x1", "x2", "y1", "y2")(metadata)
return abs(x1 - x2) > 2 and abs(y1 - y2) > 2
yield from extract_and_stitch(pdf_path, convert_to_rgb=True, filter_fn=image_is_large_enough, **kwargs)