Matthias Bisping 9f18ef9cd1 Pull request #13: Image representation info
Merge in RR/image-prediction from image_representation_metadata to master

Squashed commit of the following:

commit bfe92b24a2959a72c0e913ef051476c01c285ad0
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Thu May 12 11:24:12 2022 +0200

    updated comment

commit f5721560f3fda05a8ad45d0b5e406434204c1177
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Thu May 12 11:16:02 2022 +0200

    unskip server predict test

commit 41d94199ede7d58427b9e9541605a94f962c3dc4
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Thu May 12 11:15:48 2022 +0200

    added hash image encoder that produces representations by hashing

commit 84a8b0a290081616240c3876f8db8a1ae8592096
Merge: 1624ee4 6030f40
Author: Matthias Bisping <matthias.bisping@iqser.com>
Date:   Thu May 12 10:18:56 2022 +0200

    Merge branch 'master' of ssh://git.iqser.com:2222/rr/image-prediction

commit 1624ee40376b84a4519025343f913120c464407a
Author: Matthias Bisping <Matthias.Bisping@iqser.com>
Date:   Mon Apr 25 16:51:13 2022 +0200

    Pull request #11: fixed assignment

    Merge in RR/image-prediction from image_prediction_service_overhaul_xref_and_empty_result_fix_fix to master

    Squashed commit of the following:

    commit 7312e57d1127b081bfdc6e96311e8348d3f8110d
    Author: Matthias Bisping <matthias.bisping@iqser.com>
    Date:   Mon Apr 25 16:45:12 2022 +0200

        logging setup changed

    commit 955e353d74f414ee2d57b234bdf84d32817d14bf
    Author: Matthias Bisping <matthias.bisping@iqser.com>
    Date:   Mon Apr 25 16:37:52 2022 +0200

        fixed assignment
2022-05-12 11:49:19 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-02-03 11:44:11 +01:00
2022-04-25 12:25:41 +02:00
2022-02-03 11:44:11 +01:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-03-02 10:56:37 +01:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00

Setup

Build base image

docker build -f Dockerfile_base -t image-prediction-base .
docker build -f Dockerfile -t image-prediction .

Usage

Without Docker

py scripts/run_pipeline.py /path/to/a/pdf

With Docker

Shell 1

docker run --rm --net=host image-prediction

Shell 2

python scripts/pyinfra_mock.py /path/to/a/pdf

Tests

Run for example this command to execute all tests and get a coverage report:

coverage run -m pytest test --tb=native -q -s -vvv -x && coverage combine && coverage report -m

After having built the service container as specified above, you can also run tests in a container as follows:

./run_tests.sh

Message Body Formats

Request Format

The request messages need to provide the fields "dossierId" and "fileId". A request should look like this:

{
    "dossierId": "<string identifier>",
    "fileId": "<string identifier>"
}

Any additional keys are ignored.

Response Format

Response bodies contain information about the identified class of the image, the confidence of the classification, the position and size of the image as well as the results of additional convenience filters which can be configured through environment variables. A response body looks like this:

{
  "dossierId": "debug",
  "fileId": "13ffa9851740c8d20c4c7d1706d72f2a",
  "data": [...]
}

An image metadata record (entry in "data" field of a response body) looks like this:

{
  "classification": {
    "label": "logo",
    "probabilities": {
      "logo": 1.0,
      "signature": 1.1599173226749333e-17,
      "other": 2.994595513398207e-23,
      "formula": 4.352109377281029e-31
    }
  },
  "position": {
    "x1": 475.95,
    "x2": 533.4,
    "y1": 796.47,
    "y2": 827.62,
    "pageNumber": 6
  },
  "geometry": {
    "width": 57.44999999999999,
    "height": 31.149999999999977
  },
  "alpha": false,
  "filters": {
    "geometry": {
      "imageSize": {
        "quotient": 0.05975350599135938,
        "tooLarge": false,
        "tooSmall": false
      },
      "imageFormat": {
        "quotient": 1.8443017656500813,
        "tooTall": false,
        "tooWide": false
      }
    },
    "probability": {
      "unconfident": false
    },
    "allPassed": true
  }
}

Configuration

A configuration file is located under config.yaml. All relevant variables can be configured via exporting environment variables.

Environment Variable Default Description
LOGGING_LEVEL_ROOT "INFO" Logging level for log file messages
VERBOSE true Service prints document processing progress to stdout
BATCH_SIZE 16 Number of images in memory simultaneously per service instance
RUN_ID "fabfb1f192c745369b88cab34471aba7" The ID of the mlflow run to load the image classifier from
MIN_REL_IMAGE_SIZE 0.05 Minimally permissible image size to page size ratio
MAX_REL_IMAGE_SIZE 0.75 Maximally permissible image size to page size ratio
MIN_IMAGE_FORMAT 0.1 Minimally permissible image width to height ratio
MAX_IMAGE_FORMAT 10 Maximally permissible image width to height ratio

See also: https://git.iqser.com/projects/RED/repos/helm/browse/redaction/templates/image-service-v2

Description
Analysis container service for redai-image
Readme 1.8 MiB
2025-01-31 13:08:10 +01:00
Languages
Python 96.5%
Dockerfile 1.8%
Shell 1.7%