pyinfra/test/fixtures/input.py
Matthias Bisping 8575567890 refactoring
2022-05-03 14:25:01 +02:00

60 lines
1.5 KiB
Python

from functools import partial
import numpy as np
import pytest
from PIL import Image
from funcy import lmap, compose, flatten
from pyinfra.rest import pack, normalize_item
from pyinfra.utils.func import star, lift
from test.utils.image import image_to_bytes
@pytest.fixture
def data(data_type, pdf):
if data_type == "pdf":
return pdf
elif data_type == "bytestring":
return "content".encode("latin1")
@pytest.fixture
def input_data_items(item_type, n_items, pdf):
if item_type == "string":
return [bytes(f"content{i}", encoding="utf8") for i in range(n_items)]
elif item_type == "image":
return images(n_items)
elif item_type == "pdf":
return [pdf] * n_items
else:
raise ValueError(f"Unknown item type {item_type}")
@pytest.fixture
def target_data_items(input_data_items, item_type, operation, metadata):
op = compose(lift(star(pack)), normalize_item, partial(operation, metadata=metadata))
expected = list(flatten(map(op, input_data_items)))
return expected
@pytest.fixture(params=[0, 1, 2, 5])
def n_items(request):
return request.param
def array_to_image(array) -> Image.Image:
return Image.fromarray(np.uint8(array * 255), mode="RGB")
def input_batch(n_items):
return np.random.random_sample(size=(n_items, 3, 30, 30))
def images(n_items):
return lmap(compose(image_to_bytes, array_to_image), input_batch(n_items))
@pytest.fixture
def metadata():
return {"idx": [1, 100, 101], "path": "asd/asd"}