2023-02-22 12:23:26 +01:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2023-02-22 11:54:01 +01:00
2022-02-03 11:44:11 +01:00
2022-04-25 12:25:41 +02:00
2022-02-03 11:44:11 +01:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-03-02 10:56:37 +01:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-04-25 12:25:41 +02:00
2022-08-03 14:59:07 +02:00

Setup

Build base image

docker build -f Dockerfile_base -t image-prediction-base .
docker build -f Dockerfile -t image-prediction .

Usage

Without Docker

py scripts/run_pipeline.py /path/to/a/pdf

With Docker

Shell 1

docker run --rm --net=host image-prediction

Shell 2

python scripts/pyinfra_mock.py /path/to/a/pdf

Tests

Run for example this command to execute all tests and get a coverage report:

coverage run -m pytest test --tb=native -q -s -vvv -x && coverage combine && coverage report -m

After having built the service container as specified above, you can also run tests in a container as follows:

./run_tests.sh

Message Body Formats

Request Format

The request messages need to provide the fields "dossierId" and "fileId". A request should look like this:

{
    "dossierId": "<string identifier>",
    "fileId": "<string identifier>"
}

Any additional keys are ignored.

Response Format

Response bodies contain information about the identified class of the image, the confidence of the classification, the position and size of the image as well as the results of additional convenience filters which can be configured through environment variables. A response body looks like this:

{
  "dossierId": "debug",
  "fileId": "13ffa9851740c8d20c4c7d1706d72f2a",
  "data": [...]
}

An image metadata record (entry in "data" field of a response body) looks like this:

{
  "classification": {
    "label": "logo",
    "probabilities": {
      "logo": 1.0,
      "signature": 1.1599173226749333e-17,
      "other": 2.994595513398207e-23,
      "formula": 4.352109377281029e-31
    }
  },
  "position": {
    "x1": 475.95,
    "x2": 533.4,
    "y1": 796.47,
    "y2": 827.62,
    "pageNumber": 6
  },
  "geometry": {
    "width": 57.44999999999999,
    "height": 31.149999999999977
  },
  "alpha": false,
  "filters": {
    "geometry": {
      "imageSize": {
        "quotient": 0.05975350599135938,
        "tooLarge": false,
        "tooSmall": false
      },
      "imageFormat": {
        "quotient": 1.8443017656500813,
        "tooTall": false,
        "tooWide": false
      }
    },
    "probability": {
      "unconfident": false
    },
    "allPassed": true
  }
}

Configuration

A configuration file is located under config.yaml. All relevant variables can be configured via exporting environment variables.

Environment Variable Default Description
LOGGING_LEVEL_ROOT "INFO" Logging level for log file messages
VERBOSE true Service prints document processing progress to stdout
BATCH_SIZE 16 Number of images in memory simultaneously per service instance
RUN_ID "fabfb1f192c745369b88cab34471aba7" The ID of the mlflow run to load the image classifier from
MIN_REL_IMAGE_SIZE 0.05 Minimally permissible image size to page size ratio
MAX_REL_IMAGE_SIZE 0.75 Maximally permissible image size to page size ratio
MIN_IMAGE_FORMAT 0.1 Minimally permissible image width to height ratio
MAX_IMAGE_FORMAT 10 Maximally permissible image width to height ratio

See also: https://git.iqser.com/projects/RED/repos/helm/browse/redaction/templates/image-service-v2

Description
Analysis container service for redai-image
Readme 1.8 MiB
2025-01-31 13:08:10 +01:00
Languages
Python 96.5%
Dockerfile 1.8%
Shell 1.7%