Compare commits
147 Commits
release/3.
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0027421628 | ||
|
|
00740c91b8 | ||
|
|
a3d79eb9af | ||
|
|
373f9f2d01 | ||
|
|
2429d90dd5 | ||
|
|
2b85999258 | ||
|
|
4b15d2c2ca | ||
|
|
bf1ca8d6f9 | ||
|
|
9a4b8cad2b | ||
|
|
28adb50330 | ||
|
|
7a3fdf8fa4 | ||
|
|
3fbcd65e9b | ||
|
|
90a60b4b7c | ||
|
|
526de8984c | ||
|
|
99cbf3c9bf | ||
|
|
986137e729 | ||
|
|
f950b96cfb | ||
|
|
2385d19bc2 | ||
|
|
16f2f0d557 | ||
|
|
afa6fc34cb | ||
|
|
a192e05be2 | ||
|
|
d23034e38a | ||
|
|
4bc53cf88b | ||
|
|
e737f64ed2 | ||
|
|
4b099f0106 | ||
|
|
b3a58d6777 | ||
|
|
c888453cc6 | ||
|
|
bf9ab4b1a2 | ||
|
|
9ff88a1e5d | ||
|
|
c852434b75 | ||
|
|
8655e25ec0 | ||
|
|
103c19d4cd | ||
|
|
530001a0af | ||
|
|
a6c11a9db5 | ||
|
|
1796c1bcbb | ||
|
|
f4b9ff54aa | ||
|
|
278b42e368 | ||
|
|
9600e4ca23 | ||
|
|
8485345dd1 | ||
|
|
d1a523c7d6 | ||
|
|
278f54eaa7 | ||
|
|
443c2614f9 | ||
|
|
4102a564a3 | ||
|
|
7f49642ba0 | ||
|
|
ba8d1dfdfe | ||
|
|
150d0d64e5 | ||
|
|
a024ddfcf7 | ||
|
|
13cbfa4ddf | ||
|
|
75af55dbda | ||
|
|
499c501acf | ||
|
|
6163e29d6b | ||
|
|
dadc0a4163 | ||
|
|
729ce17de0 | ||
|
|
88fbe077e6 | ||
|
|
f8ecef1054 | ||
|
|
5f44cc6560 | ||
|
|
b60f4d0383 | ||
|
|
87873cc3a3 | ||
|
|
523ca1db7d | ||
|
|
c25f6902e0 | ||
|
|
9e336ecc01 | ||
|
|
0efa2127d7 | ||
|
|
501fd48d69 | ||
|
|
4a825cb264 | ||
|
|
694a6ccb33 | ||
|
|
1d043f97fc | ||
|
|
7cac73f07b | ||
|
|
133fde67ba | ||
|
|
946cfff630 | ||
|
|
f73264874e | ||
|
|
d3868efb4e | ||
|
|
f0c2282197 | ||
|
|
57e1ec1a14 | ||
|
|
8b9771373b | ||
|
|
cd3ce653e1 | ||
|
|
d8075aad38 | ||
|
|
2b3043bc1e | ||
|
|
3ad0345f4e | ||
|
|
134156f59d | ||
|
|
1205f2e0ed | ||
|
|
8ee966c721 | ||
|
|
892742ef17 | ||
|
|
06b1af9f1a | ||
|
|
0194ce3f7e | ||
|
|
41d08f7b5b | ||
|
|
b91d5a0ab2 | ||
|
|
7b37f3c913 | ||
|
|
c32005b841 | ||
|
|
6406ce6b25 | ||
|
|
4ecafb2977 | ||
|
|
967c2fad1b | ||
|
|
b74e79f113 | ||
|
|
50c791f6ca | ||
|
|
adb363842d | ||
|
|
81520b1a53 | ||
|
|
ed25af33ad | ||
|
|
1967945ff7 | ||
|
|
faf4d7ed0f | ||
|
|
7c7b038491 | ||
|
|
cd3e215776 | ||
|
|
bc1bd96e6c | ||
|
|
2001e9d7f3 | ||
|
|
846f127d3b | ||
|
|
d4657f1ab1 | ||
|
|
ee99d76aab | ||
|
|
00b40c0632 | ||
|
|
c1ae8e6a4b | ||
|
|
0bdf5a726a | ||
|
|
d505ac4e50 | ||
|
|
7dca05a53d | ||
|
|
c1449134ec | ||
|
|
29c76e7ebf | ||
|
|
ecc9f69d9c | ||
|
|
4bcadcd266 | ||
|
|
9065ec1d12 | ||
|
|
d239368d70 | ||
|
|
b5dc5aa777 | ||
|
|
54b7ba24e8 | ||
|
|
463f4da92b | ||
|
|
79455f0dd6 | ||
|
|
2bc9c24f6a | ||
|
|
ea301b4df2 | ||
|
|
5cdf93b923 | ||
|
|
4d43e385c5 | ||
|
|
bd0279ddd1 | ||
|
|
2995d5ee48 | ||
|
|
eff1bb4124 | ||
|
|
c478333111 | ||
|
|
978f48e8f9 | ||
|
|
94652aafe4 | ||
|
|
c4416636c0 | ||
|
|
c0b41e77b8 | ||
|
|
73f7491c8f | ||
|
|
2385584dcb | ||
|
|
b880e892ec | ||
|
|
8c7349c2d1 | ||
|
|
c55777e339 | ||
|
|
0f440bdb09 | ||
|
|
436a32ad2b | ||
|
|
9ec6cc19ba | ||
|
|
2d385b0a73 | ||
|
|
5bd5e0cf2b | ||
|
|
876260f403 | ||
|
|
368c54a8be | ||
|
|
1490d27308 | ||
|
|
4eb7f3c40a | ||
|
|
98dc001123 |
@ -1,6 +1,8 @@
|
||||
[core]
|
||||
remote = vector
|
||||
remote = azure_remote
|
||||
autostage = true
|
||||
['remote "vector"']
|
||||
url = ssh://vector.iqser.com/research/image-prediction/
|
||||
port = 22
|
||||
['remote "azure_remote"']
|
||||
url = azure://image-classification-dvc/
|
||||
5
.gitignore
vendored
5
.gitignore
vendored
@ -1,7 +1,8 @@
|
||||
.vscode/
|
||||
*.h5
|
||||
/venv/
|
||||
*venv
|
||||
.idea/
|
||||
src/data
|
||||
|
||||
!.gitignore
|
||||
*.project
|
||||
@ -172,4 +173,4 @@ fabric.properties
|
||||
# https://plugins.jetbrains.com/plugin/12206-codestream
|
||||
.idea/codestream.xml
|
||||
|
||||
# End of https://www.toptal.com/developers/gitignore/api/linux,pycharm
|
||||
# End of https://www.toptal.com/developers/gitignore/api/linux,pycharm
|
||||
51
.gitlab-ci.yml
Normal file
51
.gitlab-ci.yml
Normal file
@ -0,0 +1,51 @@
|
||||
include:
|
||||
- project: "Gitlab/gitlab"
|
||||
ref: main
|
||||
file: "/ci-templates/research/dvc.gitlab-ci.yml"
|
||||
- project: "Gitlab/gitlab"
|
||||
ref: main
|
||||
file: "/ci-templates/research/versioning-build-test-release.gitlab-ci.yml"
|
||||
|
||||
variables:
|
||||
NEXUS_PROJECT_DIR: red
|
||||
IMAGENAME: "${CI_PROJECT_NAME}"
|
||||
INTEGRATION_TEST_FILE: "${CI_PROJECT_ID}.pdf"
|
||||
FF_USE_FASTZIP: "true" # enable fastzip - a faster zip implementation that also supports level configuration.
|
||||
ARTIFACT_COMPRESSION_LEVEL: default # can also be set to fastest, fast, slow and slowest. If just enabling fastzip is not enough try setting this to fastest or fast.
|
||||
CACHE_COMPRESSION_LEVEL: default # same as above, but for caches
|
||||
# TRANSFER_METER_FREQUENCY: 5s # will display transfer progress every 5 seconds for artifacts and remote caches. For debugging purposes.
|
||||
|
||||
stages:
|
||||
- data
|
||||
- setup
|
||||
- tests
|
||||
- sonarqube
|
||||
- versioning
|
||||
- build
|
||||
- integration-tests
|
||||
- release
|
||||
|
||||
docker-build:
|
||||
extends: .docker-build
|
||||
needs:
|
||||
- job: dvc-pull
|
||||
artifacts: true
|
||||
- !reference [.needs-versioning, needs] # leave this line as is
|
||||
|
||||
###################
|
||||
# INTEGRATION TESTS
|
||||
trigger-integration-tests:
|
||||
extends: .integration-tests
|
||||
# ADD THE MODEL BUILD WHICH SHOULD TRIGGER THE INTEGRATION TESTS
|
||||
# needs:
|
||||
# - job: docker-build::model_name
|
||||
# artifacts: true
|
||||
rules:
|
||||
- when: never
|
||||
|
||||
#########
|
||||
# RELEASE
|
||||
release:
|
||||
extends: .release
|
||||
needs:
|
||||
- !reference [.needs-versioning, needs] # leave this line as is
|
||||
6
.gitmodules
vendored
6
.gitmodules
vendored
@ -1,6 +0,0 @@
|
||||
[submodule "incl/pyinfra"]
|
||||
path = incl/pyinfra
|
||||
url = ssh://git@git.iqser.com:2222/rr/pyinfra.git
|
||||
[submodule "incl/pdf2image"]
|
||||
path = incl/pdf2image
|
||||
url = ssh://git@git.iqser.com:2222/rr/pdf2image.git
|
||||
1
.python-version
Normal file
1
.python-version
Normal file
@ -0,0 +1 @@
|
||||
3.10
|
||||
84
Dockerfile
84
Dockerfile
@ -1,27 +1,73 @@
|
||||
FROM image-prediction-base
|
||||
FROM python:3.10-slim AS builder
|
||||
|
||||
WORKDIR /app/service
|
||||
ARG GITLAB_USER
|
||||
ARG GITLAB_ACCESS_TOKEN
|
||||
|
||||
COPY src src
|
||||
COPY incl/pyinfra incl/pyinfra
|
||||
COPY incl/pdf2image incl/pdf2image
|
||||
COPY data data
|
||||
COPY image_prediction image_prediction
|
||||
COPY setup.py setup.py
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY config.yaml config.yaml
|
||||
COPY banner.txt banner.txt
|
||||
ARG PYPI_REGISTRY_RESEARCH=https://gitlab.knecon.com/api/v4/groups/19/-/packages/pypi
|
||||
ARG POETRY_SOURCE_REF_RESEARCH=gitlab-research
|
||||
|
||||
# Install dependencies differing from base image.
|
||||
RUN python3 -m pip install -r requirements.txt
|
||||
RUN python3 -m pip install -r incl/pyinfra/requirements.txt
|
||||
RUN python3 -m pip install -r incl/pdf2image/requirements.txt
|
||||
ARG PYPI_REGISTRY_RED=https://gitlab.knecon.com/api/v4/groups/12/-/packages/pypi
|
||||
ARG POETRY_SOURCE_REF_RED=gitlab-red
|
||||
|
||||
RUN python3 -m pip install -e .
|
||||
RUN python3 -m pip install -e incl/pyinfra
|
||||
RUN python3 -m pip install -e incl/pdf2image
|
||||
ARG PYPI_REGISTRY_FFORESIGHT=https://gitlab.knecon.com/api/v4/groups/269/-/packages/pypi
|
||||
ARG POETRY_SOURCE_REF_FFORESIGHT=gitlab-fforesight
|
||||
|
||||
ARG VERSION=dev
|
||||
|
||||
LABEL maintainer="Research <research@knecon.com>"
|
||||
LABEL version="${VERSION}"
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
###########
|
||||
# ENV SETUP
|
||||
ENV PYTHONDONTWRITEBYTECODE=true
|
||||
ENV PYTHONUNBUFFERED=true
|
||||
ENV POETRY_HOME=/opt/poetry
|
||||
ENV PATH="$POETRY_HOME/bin:$PATH"
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y curl git bash build-essential libffi-dev libssl-dev && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN curl -sSL https://install.python-poetry.org | python3 -
|
||||
RUN poetry --version
|
||||
|
||||
COPY pyproject.toml poetry.lock ./
|
||||
|
||||
RUN poetry config virtualenvs.create true && \
|
||||
poetry config virtualenvs.in-project true && \
|
||||
poetry config installer.max-workers 10 && \
|
||||
poetry config repositories.${POETRY_SOURCE_REF_RESEARCH} ${PYPI_REGISTRY_RESEARCH} && \
|
||||
poetry config http-basic.${POETRY_SOURCE_REF_RESEARCH} ${GITLAB_USER} ${GITLAB_ACCESS_TOKEN} && \
|
||||
poetry config repositories.${POETRY_SOURCE_REF_RED} ${PYPI_REGISTRY_RED} && \
|
||||
poetry config http-basic.${POETRY_SOURCE_REF_RED} ${GITLAB_USER} ${GITLAB_ACCESS_TOKEN} && \
|
||||
poetry config repositories.${POETRY_SOURCE_REF_FFORESIGHT} ${PYPI_REGISTRY_FFORESIGHT} && \
|
||||
poetry config http-basic.${POETRY_SOURCE_REF_FFORESIGHT} ${GITLAB_USER} ${GITLAB_ACCESS_TOKEN} && \
|
||||
poetry install --without=dev -vv --no-interaction --no-root
|
||||
|
||||
###############
|
||||
# WORKING IMAGE
|
||||
FROM python:3.10-slim
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
# COPY SOURCE CODE FROM BUILDER IMAGE
|
||||
COPY --from=builder /app /app
|
||||
# COPY BILL OF MATERIALS (BOM)
|
||||
COPY bom.json /bom.json
|
||||
|
||||
ENV PATH="/app/.venv/bin:$PATH"
|
||||
|
||||
###################
|
||||
# COPY SOURCE CODE
|
||||
COPY ./src ./src
|
||||
COPY ./config ./config
|
||||
COPY ./data ./data
|
||||
COPY banner.txt ./
|
||||
|
||||
EXPOSE 5000
|
||||
EXPOSE 8080
|
||||
|
||||
CMD ["python3", "src/serve.py"]
|
||||
CMD [ "python", "src/serve.py"]
|
||||
|
||||
@ -1,25 +0,0 @@
|
||||
FROM python:3.8 as builder1
|
||||
|
||||
# Use a virtual environment.
|
||||
RUN python -m venv /app/venv
|
||||
ENV PATH="/app/venv/bin:$PATH"
|
||||
|
||||
# Upgrade pip.
|
||||
RUN python -m pip install --upgrade pip
|
||||
|
||||
# Make a directory for the service files and copy the service repo into the container.
|
||||
WORKDIR /app/service
|
||||
COPY ./requirements.txt ./requirements.txt
|
||||
|
||||
# Install dependencies.
|
||||
RUN python3 -m pip install -r requirements.txt
|
||||
|
||||
# Make a new container and copy all relevant files over to filter out temporary files
|
||||
# produced during setup to reduce the final container's size.
|
||||
FROM python:3.8
|
||||
|
||||
WORKDIR /app/
|
||||
COPY --from=builder1 /app .
|
||||
ENV PATH="/app/venv/bin:$PATH"
|
||||
|
||||
WORKDIR /app/service
|
||||
@ -1,28 +1,40 @@
|
||||
ARG BASE_ROOT="nexus.iqser.com:5001/red/"
|
||||
ARG VERSION_TAG="dev"
|
||||
FROM python:3.10
|
||||
|
||||
FROM ${BASE_ROOT}image-prediction:${VERSION_TAG}
|
||||
ARG USERNAME
|
||||
ARG TOKEN
|
||||
ARG PYPI_REGISTRY_RESEARCH=https://gitlab.knecon.com/api/v4/groups/19/-/packages/pypi
|
||||
ARG POETRY_SOURCE_REF_RESEARCH=gitlab-research
|
||||
ARG PYPI_REGISTRY_RED=https://gitlab.knecon.com/api/v4/groups/12/-/packages/pypi
|
||||
ARG POETRY_SOURCE_REF_RED=gitlab-red
|
||||
ARG VERSION=dev
|
||||
|
||||
WORKDIR /app/service
|
||||
LABEL maintainer="Research <research@knecon.com>"
|
||||
LABEL version="${VERSION}"
|
||||
|
||||
COPY src src
|
||||
COPY incl/pyinfra incl/pyinfra
|
||||
COPY incl/pdf2image incl/pdf2image
|
||||
COPY data data
|
||||
COPY image_prediction image_prediction
|
||||
COPY setup.py setup.py
|
||||
COPY requirements.txt requirements.txt
|
||||
COPY config.yaml config.yaml
|
||||
COPY banner.txt banner.txt
|
||||
WORKDIR /app
|
||||
|
||||
# Install module & dependencies
|
||||
RUN python3 -m pip install -r requirements.txt
|
||||
RUN python3 -m pip install -r incl/pyinfra/requirements.txt
|
||||
RUN python3 -m pip install -r incl/pdf2image/requirements.txt
|
||||
ENV PYTHONUNBUFFERED=true
|
||||
ENV POETRY_HOME=/opt/poetry
|
||||
ENV PATH="$POETRY_HOME/bin:$PATH"
|
||||
|
||||
RUN python3 -m pip install -e .
|
||||
RUN python3 -m pip install -e incl/pyinfra
|
||||
RUN python3 -m pip install -e incl/pdf2image
|
||||
RUN curl -sSL https://install.python-poetry.org | python3 -
|
||||
|
||||
COPY ./data ./data
|
||||
COPY ./test ./test
|
||||
COPY ./config ./config
|
||||
COPY ./src ./src
|
||||
COPY pyproject.toml poetry.lock banner.txt config.yaml./
|
||||
|
||||
RUN poetry config virtualenvs.create false && \
|
||||
poetry config installer.max-workers 10 && \
|
||||
poetry config repositories.${POETRY_SOURCE_REF_RESEARCH} ${PYPI_REGISTRY_RESEARCH} && \
|
||||
poetry config http-basic.${POETRY_SOURCE_REF_RESEARCH} ${USERNAME} ${TOKEN} && \
|
||||
poetry config repositories.${POETRY_SOURCE_REF_RED} ${PYPI_REGISTRY_RED} && \
|
||||
poetry config http-basic.${POETRY_SOURCE_REF_RED} ${USERNAME} ${TOKEN} && \
|
||||
poetry install --without=dev -vv --no-interaction --no-root
|
||||
|
||||
EXPOSE 5000
|
||||
EXPOSE 8080
|
||||
|
||||
RUN apt update --yes
|
||||
RUN apt install vim --yes
|
||||
|
||||
@ -2,8 +2,11 @@
|
||||
|
||||
Build base image
|
||||
```bash
|
||||
docker build -f Dockerfile_base -t image-prediction-base .
|
||||
docker build -f Dockerfile -t image-prediction .
|
||||
docker build -t image-classification-image --progress=plain --no-cache \
|
||||
-f Dockerfile \
|
||||
--build-arg USERNAME=$GITLAB_USER \
|
||||
--build-arg TOKEN=$GITLAB_ACCESS_TOKEN \
|
||||
.
|
||||
```
|
||||
|
||||
### Usage
|
||||
|
||||
@ -1,40 +0,0 @@
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<parent>
|
||||
<groupId>com.atlassian.bamboo</groupId>
|
||||
<artifactId>bamboo-specs-parent</artifactId>
|
||||
<version>7.1.2</version>
|
||||
<relativePath/>
|
||||
</parent>
|
||||
|
||||
<artifactId>bamboo-specs</artifactId>
|
||||
<version>1.0.0-SNAPSHOT</version>
|
||||
<packaging>jar</packaging>
|
||||
|
||||
<properties>
|
||||
<sonar.skip>true</sonar.skip>
|
||||
</properties>
|
||||
|
||||
<dependencies>
|
||||
<dependency>
|
||||
<groupId>com.atlassian.bamboo</groupId>
|
||||
<artifactId>bamboo-specs-api</artifactId>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.atlassian.bamboo</groupId>
|
||||
<artifactId>bamboo-specs</artifactId>
|
||||
</dependency>
|
||||
|
||||
<!-- Test dependencies -->
|
||||
<dependency>
|
||||
<groupId>junit</groupId>
|
||||
<artifactId>junit</artifactId>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<!-- run 'mvn test' to perform offline validation of the plan -->
|
||||
<!-- run 'mvn -Ppublish-specs' to upload the plan to your Bamboo server -->
|
||||
</project>
|
||||
@ -1,180 +0,0 @@
|
||||
package buildjob;
|
||||
|
||||
import static com.atlassian.bamboo.specs.builders.task.TestParserTask.createJUnitParserTask;
|
||||
|
||||
import java.time.LocalTime;
|
||||
|
||||
import com.atlassian.bamboo.specs.api.BambooSpec;
|
||||
import com.atlassian.bamboo.specs.api.builders.BambooKey;
|
||||
import com.atlassian.bamboo.specs.api.builders.docker.DockerConfiguration;
|
||||
import com.atlassian.bamboo.specs.api.builders.permission.PermissionType;
|
||||
import com.atlassian.bamboo.specs.api.builders.permission.Permissions;
|
||||
import com.atlassian.bamboo.specs.api.builders.permission.PlanPermissions;
|
||||
import com.atlassian.bamboo.specs.api.builders.plan.Job;
|
||||
import com.atlassian.bamboo.specs.api.builders.plan.Plan;
|
||||
import com.atlassian.bamboo.specs.api.builders.plan.PlanIdentifier;
|
||||
import com.atlassian.bamboo.specs.api.builders.plan.Stage;
|
||||
import com.atlassian.bamboo.specs.api.builders.plan.branches.BranchCleanup;
|
||||
import com.atlassian.bamboo.specs.api.builders.plan.branches.PlanBranchManagement;
|
||||
import com.atlassian.bamboo.specs.api.builders.project.Project;
|
||||
import com.atlassian.bamboo.specs.builders.task.CheckoutItem;
|
||||
import com.atlassian.bamboo.specs.builders.task.InjectVariablesTask;
|
||||
import com.atlassian.bamboo.specs.builders.task.ScriptTask;
|
||||
import com.atlassian.bamboo.specs.builders.task.VcsCheckoutTask;
|
||||
import com.atlassian.bamboo.specs.builders.task.CleanWorkingDirectoryTask;
|
||||
import com.atlassian.bamboo.specs.builders.task.VcsTagTask;
|
||||
import com.atlassian.bamboo.specs.builders.trigger.BitbucketServerTrigger;
|
||||
import com.atlassian.bamboo.specs.builders.trigger.ScheduledTrigger;
|
||||
import com.atlassian.bamboo.specs.model.task.InjectVariablesScope;
|
||||
import com.atlassian.bamboo.specs.api.builders.Variable;
|
||||
import com.atlassian.bamboo.specs.util.BambooServer;
|
||||
import com.atlassian.bamboo.specs.builders.task.ScriptTask;
|
||||
import com.atlassian.bamboo.specs.model.task.ScriptTaskProperties.Location;
|
||||
|
||||
/**
|
||||
* Plan configuration for Bamboo.
|
||||
* Learn more on: <a href="https://confluence.atlassian.com/display/BAMBOO/Bamboo+Specs">https://confluence.atlassian.com/display/BAMBOO/Bamboo+Specs</a>
|
||||
*/
|
||||
@BambooSpec
|
||||
public class PlanSpec {
|
||||
|
||||
private static final String SERVICE_NAME = "image-prediction";
|
||||
private static final String SERVICE_NAME_BASE = "image-prediction-base";
|
||||
|
||||
private static final String SERVICE_KEY = SERVICE_NAME.toUpperCase().replaceAll("-","").replaceAll("_","");
|
||||
|
||||
/**
|
||||
* Run main to publish plan on Bamboo
|
||||
*/
|
||||
public static void main(final String[] args) throws Exception {
|
||||
//By default credentials are read from the '.credentials' file.
|
||||
BambooServer bambooServer = new BambooServer("http://localhost:8085");
|
||||
|
||||
Plan plan = new PlanSpec().createDockerBuildPlan();
|
||||
bambooServer.publish(plan);
|
||||
PlanPermissions planPermission = new PlanSpec().createPlanPermission(plan.getIdentifier());
|
||||
bambooServer.publish(planPermission);
|
||||
|
||||
Plan secPlan = new PlanSpec().createSecBuild();
|
||||
bambooServer.publish(secPlan);
|
||||
PlanPermissions secPlanPermission = new PlanSpec().createPlanPermission(secPlan.getIdentifier());
|
||||
bambooServer.publish(secPlanPermission);
|
||||
}
|
||||
|
||||
private PlanPermissions createPlanPermission(PlanIdentifier planIdentifier) {
|
||||
Permissions permission = new Permissions()
|
||||
.userPermissions("atlbamboo", PermissionType.EDIT, PermissionType.VIEW, PermissionType.ADMIN, PermissionType.CLONE, PermissionType.BUILD)
|
||||
.groupPermissions("research", PermissionType.EDIT, PermissionType.VIEW, PermissionType.CLONE, PermissionType.BUILD)
|
||||
.groupPermissions("Development", PermissionType.EDIT, PermissionType.VIEW, PermissionType.CLONE, PermissionType.BUILD)
|
||||
.groupPermissions("QA", PermissionType.EDIT, PermissionType.VIEW, PermissionType.CLONE, PermissionType.BUILD)
|
||||
.loggedInUserPermissions(PermissionType.VIEW)
|
||||
.anonymousUserPermissionView();
|
||||
return new PlanPermissions(planIdentifier.getProjectKey(), planIdentifier.getPlanKey()).permissions(permission);
|
||||
}
|
||||
|
||||
private Project project() {
|
||||
return new Project()
|
||||
.name("RED")
|
||||
.key(new BambooKey("RED"));
|
||||
}
|
||||
|
||||
public Plan createDockerBuildPlan() {
|
||||
return new Plan(
|
||||
project(),
|
||||
SERVICE_NAME, new BambooKey(SERVICE_KEY))
|
||||
.description("Docker build for image-prediction.")
|
||||
.stages(
|
||||
new Stage("Build Stage")
|
||||
.jobs(
|
||||
new Job("Build Job", new BambooKey("BUILD"))
|
||||
.tasks(
|
||||
new CleanWorkingDirectoryTask()
|
||||
.description("Clean working directory.")
|
||||
.enabled(true),
|
||||
new VcsCheckoutTask()
|
||||
.description("Checkout default repository.")
|
||||
.checkoutItems(new CheckoutItem().defaultRepository()),
|
||||
new ScriptTask()
|
||||
.description("Set config and keys.")
|
||||
.location(Location.FILE)
|
||||
.fileFromPath("bamboo-specs/src/main/resources/scripts/key-prepare.sh"),
|
||||
new ScriptTask()
|
||||
.description("Build Docker container.")
|
||||
.location(Location.FILE)
|
||||
.fileFromPath("bamboo-specs/src/main/resources/scripts/docker-build.sh")
|
||||
.argument(SERVICE_NAME + " " + SERVICE_NAME_BASE),
|
||||
new InjectVariablesTask()
|
||||
.description("Inject git tag.")
|
||||
.path("git.tag")
|
||||
.namespace("g")
|
||||
.scope(InjectVariablesScope.LOCAL),
|
||||
new VcsTagTask()
|
||||
.description("${bamboo.g.gitTag}")
|
||||
.tagName("${bamboo.g.gitTag}")
|
||||
.defaultRepository())
|
||||
.dockerConfiguration(
|
||||
new DockerConfiguration()
|
||||
.image("nexus.iqser.com:5001/infra/release_build:4.5.0")
|
||||
.volume("/var/run/docker.sock", "/var/run/docker.sock")),
|
||||
new Job("Licence Job", new BambooKey("LICENCE"))
|
||||
.enabled(false)
|
||||
.tasks(
|
||||
new VcsCheckoutTask()
|
||||
.description("Checkout default repository.")
|
||||
.checkoutItems(new CheckoutItem().defaultRepository()),
|
||||
new ScriptTask()
|
||||
.description("Build licence.")
|
||||
.location(Location.FILE)
|
||||
.fileFromPath("bamboo-specs/src/main/resources/scripts/create-licence.sh"))
|
||||
.dockerConfiguration(
|
||||
new DockerConfiguration()
|
||||
.image("nexus.iqser.com:5001/infra/maven:3.6.2-jdk-13-3.0.0")
|
||||
.volume("/etc/maven/settings.xml", "/usr/share/maven/ref/settings.xml")
|
||||
.volume("/var/run/docker.sock", "/var/run/docker.sock"))))
|
||||
.linkedRepositories("RR / " + SERVICE_NAME)
|
||||
.linkedRepositories("RR / redai_image")
|
||||
.triggers(
|
||||
new BitbucketServerTrigger())
|
||||
.planBranchManagement(
|
||||
new PlanBranchManagement()
|
||||
.createForVcsBranch()
|
||||
.delete(
|
||||
new BranchCleanup()
|
||||
.whenInactiveInRepositoryAfterDays(14))
|
||||
.notificationForCommitters());
|
||||
}
|
||||
|
||||
public Plan createSecBuild() {
|
||||
return new Plan(project(), SERVICE_NAME + "-Sec", new BambooKey(SERVICE_KEY + "SEC")).description("Security Analysis Plan")
|
||||
.stages(new Stage("Default Stage").jobs(
|
||||
new Job("Sonar Job", new BambooKey("SONAR"))
|
||||
.tasks(
|
||||
new CleanWorkingDirectoryTask()
|
||||
.description("Clean working directory.")
|
||||
.enabled(true),
|
||||
new VcsCheckoutTask()
|
||||
.description("Checkout default repository.")
|
||||
.checkoutItems(new CheckoutItem().defaultRepository()),
|
||||
new ScriptTask()
|
||||
.description("Set config and keys.")
|
||||
.location(Location.FILE)
|
||||
.fileFromPath("bamboo-specs/src/main/resources/scripts/key-prepare.sh"),
|
||||
new ScriptTask()
|
||||
.description("Run Sonarqube scan.")
|
||||
.location(Location.FILE)
|
||||
.fileFromPath("bamboo-specs/src/main/resources/scripts/sonar-scan.sh")
|
||||
.argument(SERVICE_NAME))
|
||||
.dockerConfiguration(
|
||||
new DockerConfiguration()
|
||||
.image("nexus.iqser.com:5001/infra/release_build:4.2.0")
|
||||
.volume("/var/run/docker.sock", "/var/run/docker.sock"))))
|
||||
.linkedRepositories("RR / " + SERVICE_NAME)
|
||||
.triggers(
|
||||
new ScheduledTrigger()
|
||||
.scheduleOnceDaily(LocalTime.of(23, 00)))
|
||||
.planBranchManagement(
|
||||
new PlanBranchManagement()
|
||||
.createForVcsBranchMatching("release.*")
|
||||
.notificationForCommitters());
|
||||
}
|
||||
}
|
||||
@ -1,19 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
if [[ \"${bamboo_version_tag}\" != \"dev\" ]]
|
||||
then
|
||||
${bamboo_capability_system_builder_mvn3_Maven_3}/bin/mvn \
|
||||
-f ${bamboo_build_working_directory}/pom.xml \
|
||||
versions:set \
|
||||
-DnewVersion=${bamboo_version_tag}
|
||||
|
||||
${bamboo_capability_system_builder_mvn3_Maven_3}/bin/mvn \
|
||||
-f ${bamboo_build_working_directory}/pom.xml \
|
||||
-B clean deploy \
|
||||
-e -DdeployAtEnd=true \
|
||||
-Dmaven.wagon.http.ssl.insecure=true \
|
||||
-Dmaven.wagon.http.ssl.allowall=true \
|
||||
-Dmaven.wagon.http.ssl.ignore.validity.dates=true \
|
||||
-DaltDeploymentRepository=iqser_release::default::https://nexus.iqser.com/repository/gin4-platform-releases
|
||||
fi
|
||||
@ -1,56 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
SERVICE_NAME=$1
|
||||
SERVICE_NAME_BASE=$2
|
||||
if [[ "$bamboo_planRepository_branchName" == "master" ]]
|
||||
then
|
||||
branchVersion=$(cat version.yaml | grep -Eo "version: .*" | sed -s 's|version: \(.*\)\..*\..*|\1|g')
|
||||
latestVersion=$( semver $(git tag -l "${branchVersion}.*" ) | tail -n1 )
|
||||
newVersion="$(semver $latestVersion -p -i minor)"
|
||||
echo "new release on master with version $newVersion"
|
||||
elif [[ "$bamboo_planRepository_branchName" == release* ]]
|
||||
then
|
||||
branchVersion=$(echo $bamboo_planRepository_branchName | sed -s 's|release\/\([0-9]\+\.[0-9]\+\)\.x|\1|')
|
||||
latestVersion=$( semver $(git tag -l "${branchVersion}.*" ) | tail -n1 )
|
||||
newVersion="$(semver $latestVersion -p -i patch)"
|
||||
echo "new release on $bamboo_planRepository_branchName with version $newVersion"
|
||||
elif [[ "${bamboo_version_tag}" != "dev" ]]
|
||||
then
|
||||
newVersion="${bamboo_version_tag}"
|
||||
echo "new special version bild with $newVersion"
|
||||
else
|
||||
newVersion="${bamboo_planRepository_1_branch}_${bamboo_buildNumber}"
|
||||
echo "gitTag=${newVersion}" > git.tag
|
||||
echo "dev build with tag ${newVersion}"
|
||||
python3 -m venv build_venv
|
||||
source build_venv/bin/activate
|
||||
python3 -m pip install --upgrade pip
|
||||
|
||||
pip install dvc
|
||||
pip install 'dvc[ssh]'
|
||||
dvc pull
|
||||
|
||||
echo "index-url = https://${bamboo_nexus_user}:${bamboo_nexus_password}@nexus.iqser.com/repository/python-combind/simple" >> pip.conf
|
||||
echo "${bamboo_nexus_password}" | docker login --username "${bamboo_nexus_user}" --password-stdin nexus.iqser.com:5001
|
||||
docker build -f Dockerfile_base -t $SERVICE_NAME_BASE .
|
||||
docker build -f Dockerfile -t nexus.iqser.com:5001/red/$SERVICE_NAME:${newVersion} .
|
||||
exit 0
|
||||
fi
|
||||
|
||||
echo "gitTag=${newVersion}" > git.tag
|
||||
|
||||
python3 -m venv build_venv
|
||||
source build_venv/bin/activate
|
||||
python3 -m pip install --upgrade pip
|
||||
|
||||
pip install dvc
|
||||
pip install 'dvc[ssh]'
|
||||
echo "Pulling dvc data"
|
||||
dvc pull
|
||||
|
||||
echo "index-url = https://${bamboo_nexus_user}:${bamboo_nexus_password}@nexus.iqser.com/repository/python-combind/simple" >> pip.conf
|
||||
docker build -f Dockerfile_base -t $SERVICE_NAME_BASE .
|
||||
docker build -f Dockerfile -t nexus.iqser.com:5001/red/$SERVICE_NAME:${newVersion} .
|
||||
echo "${bamboo_nexus_password}" | docker login --username "${bamboo_nexus_user}" --password-stdin nexus.iqser.com:5001
|
||||
docker push nexus.iqser.com:5001/red/$SERVICE_NAME:${newVersion}
|
||||
@ -1,8 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
mkdir -p ~/.ssh
|
||||
echo "${bamboo_agent_ssh}" | base64 -d >> ~/.ssh/id_rsa
|
||||
echo "host vector.iqser.com" > ~/.ssh/config
|
||||
echo " user bamboo-agent" >> ~/.ssh/config
|
||||
chmod 600 ~/.ssh/config ~/.ssh/id_rsa
|
||||
@ -1,57 +0,0 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
export JAVA_HOME=/usr/bin/sonar-scanner/jre
|
||||
|
||||
python3 -m venv build_venv
|
||||
source build_venv/bin/activate
|
||||
python3 -m pip install --upgrade pip
|
||||
python3 -m pip install dependency-check
|
||||
python3 -m pip install coverage
|
||||
|
||||
echo "coverage report generation"
|
||||
|
||||
bash run_tests.sh
|
||||
|
||||
if [ ! -f reports/coverage.xml ]
|
||||
then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
SERVICE_NAME=$1
|
||||
|
||||
echo "dependency-check:aggregate"
|
||||
mkdir -p reports
|
||||
dependency-check --enableExperimental -f JSON -f HTML -f XML \
|
||||
--disableAssembly -s . -o reports --project $SERVICE_NAME --exclude ".git/**" --exclude "venv/**" \
|
||||
--exclude "build_venv/**" --exclude "**/__pycache__/**" --exclude "bamboo-specs/**"
|
||||
|
||||
if [[ -z "${bamboo_repository_pr_key}" ]]
|
||||
then
|
||||
echo "Sonar Scan for branch: ${bamboo_planRepository_1_branch}"
|
||||
/usr/bin/sonar-scanner/bin/sonar-scanner \
|
||||
-Dsonar.projectKey=RED_$SERVICE_NAME \
|
||||
-Dsonar.sources=image_prediction \
|
||||
-Dsonar.host.url=https://sonarqube.iqser.com \
|
||||
-Dsonar.login=${bamboo_sonarqube_api_token_secret} \
|
||||
-Dsonar.branch.name=${bamboo_planRepository_1_branch} \
|
||||
-Dsonar.dependencyCheck.jsonReportPath=reports/dependency-check-report.json \
|
||||
-Dsonar.dependencyCheck.xmlReportPath=reports/dependency-check-report.xml \
|
||||
-Dsonar.dependencyCheck.htmlReportPath=reports/dependency-check-report.html \
|
||||
-Dsonar.python.coverage.reportPaths=reports/coverage.xml
|
||||
|
||||
else
|
||||
echo "Sonar Scan for PR with key1: ${bamboo_repository_pr_key}"
|
||||
/usr/bin/sonar-scanner/bin/sonar-scanner \
|
||||
-Dsonar.projectKey=RED_$SERVICE_NAME \
|
||||
-Dsonar.sources=image_prediction \
|
||||
-Dsonar.host.url=https://sonarqube.iqser.com \
|
||||
-Dsonar.login=${bamboo_sonarqube_api_token_secret} \
|
||||
-Dsonar.pullrequest.key=${bamboo_repository_pr_key} \
|
||||
-Dsonar.pullrequest.branch=${bamboo_repository_pr_sourceBranch} \
|
||||
-Dsonar.pullrequest.base=${bamboo_repository_pr_targetBranch} \
|
||||
-Dsonar.dependencyCheck.jsonReportPath=reports/dependency-check-report.json \
|
||||
-Dsonar.dependencyCheck.xmlReportPath=reports/dependency-check-report.xml \
|
||||
-Dsonar.dependencyCheck.htmlReportPath=reports/dependency-check-report.html \
|
||||
-Dsonar.python.coverage.reportPaths=reports/coverage.xml
|
||||
fi
|
||||
@ -1,21 +0,0 @@
|
||||
package buildjob;
|
||||
|
||||
|
||||
import com.atlassian.bamboo.specs.api.builders.plan.Plan;
|
||||
import com.atlassian.bamboo.specs.api.exceptions.PropertiesValidationException;
|
||||
import com.atlassian.bamboo.specs.api.util.EntityPropertiesBuilders;
|
||||
import org.junit.Test;
|
||||
|
||||
public class PlanSpecTest {
|
||||
@Test
|
||||
public void checkYourPlanOffline() throws PropertiesValidationException {
|
||||
Plan plan = new PlanSpec().createDockerBuildPlan();
|
||||
EntityPropertiesBuilders.build(plan);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void checkYourSecPlanOffline() throws PropertiesValidationException {
|
||||
Plan secPlan = new PlanSpec().createSecBuild();
|
||||
EntityPropertiesBuilders.build(secPlan);
|
||||
}
|
||||
}
|
||||
26
config.yaml
26
config.yaml
@ -1,26 +0,0 @@
|
||||
webserver:
|
||||
host: $SERVER_HOST|"127.0.0.1" # webserver address
|
||||
port: $SERVER_PORT|5000 # webserver port
|
||||
|
||||
service:
|
||||
logging_level: $LOGGING_LEVEL_ROOT|INFO # Logging level for service logger
|
||||
verbose: $VERBOSE|True # Service prints document processing progress to stdout
|
||||
batch_size: $BATCH_SIZE|16 # Number of images in memory simultaneously
|
||||
mlflow_run_id: $MLFLOW_RUN_ID|fabfb1f192c745369b88cab34471aba7 # The ID of the mlflow run to load the service_estimator from
|
||||
|
||||
|
||||
# These variables control filters that are applied to either images, image metadata or service_estimator predictions.
|
||||
# The filter result values are reported in the service responses. For convenience the response to a request contains a
|
||||
# "filters.allPassed" field, which is set to false if any of the values returned by the filters did not meet its
|
||||
# specified required value.
|
||||
filters:
|
||||
|
||||
image_to_page_quotient: # Image size to page size ratio (ratio of geometric means of areas)
|
||||
min: $MIN_REL_IMAGE_SIZE|0.05 # Minimum permissible
|
||||
max: $MAX_REL_IMAGE_SIZE|0.75 # Maximum permissible
|
||||
|
||||
image_width_to_height_quotient: # Image width to height ratio
|
||||
min: $MIN_IMAGE_FORMAT|0.1 # Minimum permissible
|
||||
max: $MAX_IMAGE_FORMAT|10 # Maximum permissible
|
||||
|
||||
min_confidence: $MIN_CONFIDENCE|0.5 # Minimum permissible prediction confidence
|
||||
68
config/pyinfra.toml
Normal file
68
config/pyinfra.toml
Normal file
@ -0,0 +1,68 @@
|
||||
|
||||
[asyncio]
|
||||
max_concurrent_tasks = 10
|
||||
|
||||
[dynamic_tenant_queues]
|
||||
enabled = true
|
||||
|
||||
[metrics.prometheus]
|
||||
enabled = true
|
||||
prefix = "redactmanager_image_service"
|
||||
|
||||
[tracing]
|
||||
enabled = true
|
||||
# possible values "opentelemetry" | "azure_monitor" (Excpects APPLICATIONINSIGHTS_CONNECTION_STRING environment variable.)
|
||||
type = "azure_monitor"
|
||||
|
||||
[tracing.opentelemetry]
|
||||
endpoint = "http://otel-collector-opentelemetry-collector.otel-collector:4318/v1/traces"
|
||||
service_name = "redactmanager_image_service"
|
||||
exporter = "otlp"
|
||||
|
||||
[webserver]
|
||||
host = "0.0.0.0"
|
||||
port = 8080
|
||||
|
||||
[rabbitmq]
|
||||
host = "localhost"
|
||||
port = 5672
|
||||
username = ""
|
||||
password = ""
|
||||
heartbeat = 60
|
||||
# Has to be a divider of heartbeat, and shouldn't be too big, since only in these intervals queue interactions happen (like receiving new messages)
|
||||
# This is also the minimum time the service needs to process a message
|
||||
connection_sleep = 5
|
||||
input_queue = "request_queue"
|
||||
output_queue = "response_queue"
|
||||
dead_letter_queue = "dead_letter_queue"
|
||||
|
||||
tenant_event_queue_suffix = "_tenant_event_queue"
|
||||
tenant_event_dlq_suffix = "_tenant_events_dlq"
|
||||
tenant_exchange_name = "tenants-exchange"
|
||||
queue_expiration_time = 300000 # 5 minutes in milliseconds
|
||||
|
||||
service_request_queue_prefix = "image_request_queue"
|
||||
service_request_exchange_name = "image_request_exchange"
|
||||
service_response_exchange_name = "image_response_exchange"
|
||||
service_dlq_name = "image_dlq"
|
||||
|
||||
[storage]
|
||||
backend = "s3"
|
||||
|
||||
[storage.s3]
|
||||
bucket = "redaction"
|
||||
endpoint = "http://127.0.0.1:9000"
|
||||
key = ""
|
||||
secret = ""
|
||||
region = "eu-central-1"
|
||||
|
||||
[storage.azure]
|
||||
container = "redaction"
|
||||
connection_string = ""
|
||||
|
||||
[storage.tenant_server]
|
||||
public_key = ""
|
||||
endpoint = "http://tenant-user-management:8081/internal-api/tenants"
|
||||
|
||||
[kubernetes]
|
||||
pod_name = "test_pod"
|
||||
42
config/settings.toml
Normal file
42
config/settings.toml
Normal file
@ -0,0 +1,42 @@
|
||||
[logging]
|
||||
level = "INFO"
|
||||
|
||||
[service]
|
||||
# Print document processing progress to stdout
|
||||
verbose = false
|
||||
batch_size = 6
|
||||
image_stiching_tolerance = 1 # in pixels
|
||||
mlflow_run_id = "fabfb1f192c745369b88cab34471aba7"
|
||||
|
||||
# These variables control filters that are applied to either images, image metadata or service_estimator predictions.
|
||||
# The filter result values are reported in the service responses. For convenience the response to a request contains a
|
||||
# "filters.allPassed" field, which is set to false if any of the values returned by the filters did not meet its
|
||||
# specified required value.
|
||||
[filters.confidence]
|
||||
# Minimum permissible prediction confidence
|
||||
min = 0.5
|
||||
|
||||
# Image size to page size ratio (ratio of geometric means of areas)
|
||||
[filters.image_to_page_quotient]
|
||||
min = 0.05
|
||||
max = 0.75
|
||||
|
||||
[filters.is_scanned_page]
|
||||
# Minimum permissible image to page ratio tolerance for a page to be considered scanned.
|
||||
# This is only used for filtering small images on scanned pages and is applied before processing the image, therefore
|
||||
# superseding the image_to_page_quotient filter that only applies a tag to the image after processing.
|
||||
tolerance = 0
|
||||
|
||||
# Image width to height ratio
|
||||
[filters.image_width_to_height_quotient]
|
||||
min = 0.1
|
||||
max = 10
|
||||
|
||||
# put class specific filters here ['signature', 'formula', 'logo']
|
||||
[filters.overrides.signature.image_to_page_quotient]
|
||||
max = 0.4
|
||||
|
||||
[filters.overrides.logo.image_to_page_quotient]
|
||||
min = 0.06
|
||||
|
||||
|
||||
@ -1,46 +0,0 @@
|
||||
"""Implements a config object with dot-indexing syntax."""
|
||||
|
||||
|
||||
from envyaml import EnvYAML
|
||||
|
||||
from image_prediction.locations import CONFIG_FILE
|
||||
|
||||
|
||||
def _get_item_and_maybe_make_dotindexable(container, item):
|
||||
ret = container[item]
|
||||
return DotIndexable(ret) if isinstance(ret, dict) else ret
|
||||
|
||||
|
||||
class DotIndexable:
|
||||
def __init__(self, x):
|
||||
self.x = x
|
||||
|
||||
def get(self, item, default=None):
|
||||
try:
|
||||
return _get_item_and_maybe_make_dotindexable(self.x, item)
|
||||
except KeyError:
|
||||
return default
|
||||
|
||||
def __getattr__(self, item):
|
||||
return _get_item_and_maybe_make_dotindexable(self.x, item)
|
||||
|
||||
def __repr__(self):
|
||||
return self.x.__repr__()
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.__getattr__(item)
|
||||
|
||||
|
||||
class Config:
|
||||
def __init__(self, config_path):
|
||||
self.__config = EnvYAML(config_path)
|
||||
|
||||
def __getattr__(self, item):
|
||||
if item in self.__config:
|
||||
return _get_item_and_maybe_make_dotindexable(self.__config, item)
|
||||
|
||||
def __getitem__(self, item):
|
||||
return self.__getattr__(item)
|
||||
|
||||
|
||||
CONFIG = Config(CONFIG_FILE)
|
||||
@ -1,35 +0,0 @@
|
||||
import abc
|
||||
|
||||
from image_prediction.image_extractor.extractor import ImageMetadataPair
|
||||
from image_prediction.info import Info
|
||||
|
||||
from image_prediction.transformer.transformer import Transformer
|
||||
from pdf2img.default_objects.image import ImagePlus
|
||||
|
||||
|
||||
class Formatter(Transformer):
|
||||
@abc.abstractmethod
|
||||
def format(self, obj):
|
||||
raise NotImplementedError
|
||||
|
||||
def transform(self, obj):
|
||||
raise NotImplementedError()
|
||||
|
||||
def __call__(self, obj):
|
||||
return self.format(obj)
|
||||
|
||||
|
||||
def format_image_plus(image: ImagePlus) -> ImageMetadataPair:
|
||||
enum_metadata = {
|
||||
Info.PAGE_WIDTH: image.info.pageInfo.width,
|
||||
Info.PAGE_HEIGHT: image.info.pageInfo.height,
|
||||
Info.PAGE_IDX: image.info.pageInfo.number,
|
||||
Info.ALPHA: image.info.alpha,
|
||||
Info.WIDTH: image.info.boundingBox.width,
|
||||
Info.HEIGHT: image.info.boundingBox.height,
|
||||
Info.X1: image.info.boundingBox.x0,
|
||||
Info.X2: image.info.boundingBox.x1,
|
||||
Info.Y1: image.info.boundingBox.y0,
|
||||
Info.Y2: image.info.boundingBox.y1,
|
||||
}
|
||||
return ImageMetadataPair(image.aspil(), enum_metadata)
|
||||
@ -1,208 +0,0 @@
|
||||
import atexit
|
||||
import io
|
||||
import json
|
||||
import traceback
|
||||
from functools import partial, lru_cache
|
||||
from itertools import chain, starmap, filterfalse
|
||||
from operator import itemgetter, truth
|
||||
from typing import List, Iterable, Iterator
|
||||
|
||||
import fitz
|
||||
from PIL import Image
|
||||
from funcy import rcompose, merge, pluck, curry, compose
|
||||
|
||||
from image_prediction.formatter.formatters.enum import EnumFormatter
|
||||
from image_prediction.image_extractor.extractor import ImageExtractor, ImageMetadataPair
|
||||
from image_prediction.info import Info
|
||||
from image_prediction.stitching.stitching import stitch_pairs
|
||||
from image_prediction.stitching.utils import validate_box_coords, validate_box_size
|
||||
from image_prediction.utils import get_logger
|
||||
from image_prediction.utils.generic import lift
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class ParsablePDFImageExtractor(ImageExtractor):
|
||||
def __init__(self, verbose=False, tolerance=0):
|
||||
"""
|
||||
|
||||
Args:
|
||||
verbose: Whether to show progressbar
|
||||
tolerance: The tolerance in pixels for the distance between images, beyond which they will not be stitched
|
||||
together
|
||||
"""
|
||||
self.doc: fitz.fitz.Document = None
|
||||
self.verbose = verbose
|
||||
self.tolerance = tolerance
|
||||
|
||||
def extract(self, pdf: bytes, page_range: range = None):
|
||||
self.doc = fitz.Document(stream=pdf)
|
||||
|
||||
pages = extract_pages(self.doc, page_range) if page_range else self.doc
|
||||
|
||||
image_metadata_pairs = chain.from_iterable(map(self.__process_images_on_page, pages))
|
||||
|
||||
yield from image_metadata_pairs
|
||||
|
||||
def __process_images_on_page(self, page: fitz.fitz.Page):
|
||||
images = get_images_on_page(self.doc, page)
|
||||
metadata = get_metadata_for_images_on_page(self.doc, page)
|
||||
clear_caches()
|
||||
|
||||
image_metadata_pairs = starmap(ImageMetadataPair, filter(all, zip(images, metadata)))
|
||||
# TODO: In the future, consider to introduce an image validator as a pipeline component rather than doing the
|
||||
# validation here. Invalid images can then be split into a different stream and joined with the intact images
|
||||
# again for the formatting step.
|
||||
image_metadata_pairs = self.__filter_valid_images(image_metadata_pairs)
|
||||
image_metadata_pairs = stitch_pairs(list(image_metadata_pairs), tolerance=self.tolerance)
|
||||
|
||||
yield from image_metadata_pairs
|
||||
|
||||
@staticmethod
|
||||
def __filter_valid_images(image_metadata_pairs: Iterable[ImageMetadataPair]) -> Iterator[ImageMetadataPair]:
|
||||
def validate(image: Image.Image, metadata: dict):
|
||||
try:
|
||||
# TODO: stand-in heuristic for testing if image is valid => find cleaner solution (RED-5148)
|
||||
image.resize((100, 100)).convert("RGB")
|
||||
return ImageMetadataPair(image, metadata)
|
||||
except (OSError, Exception) as err:
|
||||
metadata = json.dumps(EnumFormatter()(metadata), indent=2)
|
||||
logger.warning(f"Invalid image encountered. Image metadata:\n{metadata}\n\n{traceback.format_exc()}")
|
||||
return None
|
||||
|
||||
return filter(truth, starmap(validate, image_metadata_pairs))
|
||||
|
||||
|
||||
def extract_pages(doc, page_range):
|
||||
page_range = range(page_range.start + 1, page_range.stop + 1)
|
||||
pages = map(doc.load_page, page_range)
|
||||
|
||||
yield from pages
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_images_on_page(doc, page: fitz.Page):
|
||||
image_infos = get_image_infos(page)
|
||||
xrefs = map(itemgetter("xref"), image_infos)
|
||||
images = map(partial(xref_to_image, doc), xrefs)
|
||||
|
||||
yield from images
|
||||
|
||||
|
||||
def get_metadata_for_images_on_page(doc, page: fitz.Page):
|
||||
|
||||
metadata = map(get_image_metadata, get_image_infos(page))
|
||||
metadata = validate_coords_and_passthrough(metadata)
|
||||
|
||||
metadata = filter_out_tiny_images(metadata)
|
||||
metadata = validate_size_and_passthrough(metadata)
|
||||
|
||||
metadata = add_page_metadata(page, metadata)
|
||||
|
||||
metadata = add_alpha_channel_info(doc, page, metadata)
|
||||
|
||||
yield from metadata
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_image_infos(page: fitz.Page) -> List[dict]:
|
||||
return page.get_image_info(xrefs=True)
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def xref_to_image(doc, xref) -> Image:
|
||||
maybe_image = load_image_handle_from_xref(doc, xref)
|
||||
return Image.open(io.BytesIO(maybe_image["image"])) if maybe_image else None
|
||||
|
||||
|
||||
def get_image_metadata(image_info):
|
||||
|
||||
x1, y1, x2, y2 = map(rounder, image_info["bbox"])
|
||||
|
||||
width = abs(x2 - x1)
|
||||
height = abs(y2 - y1)
|
||||
|
||||
return {
|
||||
Info.WIDTH: width,
|
||||
Info.HEIGHT: height,
|
||||
Info.X1: x1,
|
||||
Info.X2: x2,
|
||||
Info.Y1: y1,
|
||||
Info.Y2: y2,
|
||||
}
|
||||
|
||||
|
||||
def validate_coords_and_passthrough(metadata):
|
||||
yield from map(validate_box_coords, metadata)
|
||||
|
||||
|
||||
def filter_out_tiny_images(metadata):
|
||||
yield from filterfalse(tiny, metadata)
|
||||
|
||||
|
||||
def validate_size_and_passthrough(metadata):
|
||||
yield from map(validate_box_size, metadata)
|
||||
|
||||
|
||||
def add_page_metadata(page, metadata):
|
||||
yield from map(partial(merge, get_page_metadata(page)), metadata)
|
||||
|
||||
|
||||
def add_alpha_channel_info(doc, page, metadata):
|
||||
|
||||
page_to_xrefs = compose(curry(pluck)("xref"), get_image_infos)
|
||||
xref_to_alpha = partial(has_alpha_channel, doc)
|
||||
page_to_alpha_value_per_image = compose(lift(xref_to_alpha), page_to_xrefs)
|
||||
alpha_to_dict = compose(dict, lambda a: [(Info.ALPHA, a)])
|
||||
page_to_alpha_mapping_per_image = compose(lift(alpha_to_dict), page_to_alpha_value_per_image)
|
||||
|
||||
metadata = starmap(merge, zip(page_to_alpha_mapping_per_image(page), metadata))
|
||||
|
||||
yield from metadata
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def load_image_handle_from_xref(doc, xref):
|
||||
return doc.extract_image(xref)
|
||||
|
||||
|
||||
rounder = rcompose(round, int)
|
||||
|
||||
|
||||
def get_page_metadata(page):
|
||||
page_width, page_height = map(rounder, page.mediabox_size)
|
||||
|
||||
return {
|
||||
Info.PAGE_WIDTH: page_width,
|
||||
Info.PAGE_HEIGHT: page_height,
|
||||
Info.PAGE_IDX: page.number,
|
||||
}
|
||||
|
||||
|
||||
def has_alpha_channel(doc, xref):
|
||||
|
||||
maybe_image = load_image_handle_from_xref(doc, xref)
|
||||
maybe_smask = maybe_image["smask"] if maybe_image else None
|
||||
|
||||
if maybe_smask:
|
||||
return any([doc.extract_image(maybe_smask) is not None, bool(fitz.Pixmap(doc, maybe_smask).alpha)])
|
||||
else:
|
||||
try:
|
||||
return bool(fitz.Pixmap(doc, xref).alpha)
|
||||
except ValueError:
|
||||
logger.debug(f"Encountered invalid xref `{xref}` in {doc.metadata.get('title', '<no title>')}.")
|
||||
return False
|
||||
|
||||
|
||||
def tiny(metadata):
|
||||
return metadata[Info.WIDTH] * metadata[Info.HEIGHT] <= 4
|
||||
|
||||
|
||||
def clear_caches():
|
||||
get_image_infos.cache_clear()
|
||||
load_image_handle_from_xref.cache_clear()
|
||||
get_images_on_page.cache_clear()
|
||||
xref_to_image.cache_clear()
|
||||
|
||||
|
||||
atexit.register(clear_caches)
|
||||
@ -1,17 +0,0 @@
|
||||
"""Defines constant paths relative to the module root path."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
MODULE_DIR = Path(__file__).resolve().parents[0]
|
||||
|
||||
PACKAGE_ROOT_DIR = MODULE_DIR.parents[0]
|
||||
|
||||
CONFIG_FILE = PACKAGE_ROOT_DIR / "config.yaml"
|
||||
|
||||
BANNER_FILE = PACKAGE_ROOT_DIR / "banner.txt"
|
||||
|
||||
DATA_DIR = PACKAGE_ROOT_DIR / "data"
|
||||
|
||||
MLRUNS_DIR = str(DATA_DIR / "mlruns")
|
||||
|
||||
TEST_DATA_DIR = PACKAGE_ROOT_DIR / "test" / "data"
|
||||
@ -1,153 +0,0 @@
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
from functools import lru_cache
|
||||
from operator import itemgetter
|
||||
|
||||
from funcy import first
|
||||
|
||||
from image_prediction.config import CONFIG
|
||||
from image_prediction.exceptions import ParsingError
|
||||
from image_prediction.transformer.transformer import Transformer
|
||||
from image_prediction.utils import get_logger
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class ResponseTransformer(Transformer):
|
||||
def transform(self, data):
|
||||
logger.debug("ResponseTransformer.transform")
|
||||
return build_image_info(data)
|
||||
|
||||
|
||||
def build_image_info(data: dict) -> dict:
|
||||
def compute_geometric_quotient():
|
||||
page_area_sqrt = math.sqrt(abs(page_width * page_height))
|
||||
image_area_sqrt = math.sqrt(abs(x2 - x1) * abs(y2 - y1))
|
||||
return image_area_sqrt / page_area_sqrt
|
||||
|
||||
page_width, page_height, x1, x2, y1, y2, width, height, alpha = itemgetter(
|
||||
"page_width", "page_height", "x1", "x2", "y1", "y2", "width", "height", "alpha"
|
||||
)(data)
|
||||
|
||||
classification = data["classification"]
|
||||
label = classification["label"]
|
||||
representation = data["representation"]
|
||||
|
||||
geometric_quotient = round(compute_geometric_quotient(), 4)
|
||||
|
||||
min_image_to_page_quotient_breached = bool(
|
||||
geometric_quotient < get_class_specific_min_image_to_page_quotient(label)
|
||||
)
|
||||
max_image_to_page_quotient_breached = bool(
|
||||
geometric_quotient > get_class_specific_max_image_to_page_quotient(label)
|
||||
)
|
||||
|
||||
min_image_width_to_height_quotient_breached = bool(
|
||||
width / height < get_class_specific_min_image_width_to_height_quotient(label)
|
||||
)
|
||||
max_image_width_to_height_quotient_breached = bool(
|
||||
width / height > get_class_specific_max_image_width_to_height_quotient(label)
|
||||
)
|
||||
|
||||
min_confidence_breached = bool(
|
||||
max(classification["probabilities"].values()) < get_class_specific_min_classification_confidence(label)
|
||||
)
|
||||
|
||||
image_info = {
|
||||
"classification": classification,
|
||||
"representation": representation,
|
||||
"position": {"x1": x1, "x2": x2, "y1": y1, "y2": y2, "pageNumber": data["page_idx"] + 1},
|
||||
"geometry": {"width": width, "height": height},
|
||||
"alpha": alpha,
|
||||
"filters": {
|
||||
"geometry": {
|
||||
"imageSize": {
|
||||
"quotient": geometric_quotient,
|
||||
"tooLarge": max_image_to_page_quotient_breached,
|
||||
"tooSmall": min_image_to_page_quotient_breached,
|
||||
},
|
||||
"imageFormat": {
|
||||
"quotient": round(width / height, 4),
|
||||
"tooTall": min_image_width_to_height_quotient_breached,
|
||||
"tooWide": max_image_width_to_height_quotient_breached,
|
||||
},
|
||||
},
|
||||
"probability": {"unconfident": min_confidence_breached},
|
||||
"allPassed": not any(
|
||||
[
|
||||
max_image_to_page_quotient_breached,
|
||||
min_image_to_page_quotient_breached,
|
||||
min_image_width_to_height_quotient_breached,
|
||||
max_image_width_to_height_quotient_breached,
|
||||
min_confidence_breached,
|
||||
]
|
||||
),
|
||||
},
|
||||
}
|
||||
|
||||
return image_info
|
||||
|
||||
|
||||
def get_class_specific_min_image_to_page_quotient(label, table=None):
|
||||
return get_class_specific_value(
|
||||
"REL_IMAGE_SIZE", label, "min", CONFIG.filters.image_to_page_quotient.min, table=table
|
||||
)
|
||||
|
||||
|
||||
def get_class_specific_max_image_to_page_quotient(label, table=None):
|
||||
return get_class_specific_value(
|
||||
"REL_IMAGE_SIZE", label, "max", CONFIG.filters.image_to_page_quotient.max, table=table
|
||||
)
|
||||
|
||||
|
||||
def get_class_specific_min_image_width_to_height_quotient(label, table=None):
|
||||
return get_class_specific_value(
|
||||
"IMAGE_FORMAT", label, "min", CONFIG.filters.image_width_to_height_quotient.min, table=table
|
||||
)
|
||||
|
||||
|
||||
def get_class_specific_max_image_width_to_height_quotient(label, table=None):
|
||||
return get_class_specific_value(
|
||||
"IMAGE_FORMAT", label, "max", CONFIG.filters.image_width_to_height_quotient.max, table=table
|
||||
)
|
||||
|
||||
|
||||
def get_class_specific_min_classification_confidence(label, table=None):
|
||||
return get_class_specific_value("CONFIDENCE", label, "min", CONFIG.filters.min_confidence, table=table)
|
||||
|
||||
|
||||
def get_class_specific_value(prefix, label, bound, fallback_value, table=None):
|
||||
def fallback():
|
||||
return fallback_value
|
||||
|
||||
def success():
|
||||
threshold_map = parse_env_var(prefix, table=table) or {}
|
||||
value = threshold_map.get(label, {}).get(bound)
|
||||
if value:
|
||||
logger.debug(f"Using class '{label}' specific {bound} {prefix.lower().replace('_', '-')} value.")
|
||||
return value
|
||||
|
||||
assert bound in ["min", "max"]
|
||||
|
||||
return success() or fallback()
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def parse_env_var(prefix, table=None):
|
||||
table = table or os.environ
|
||||
head = first(filter(lambda s: s == prefix, table))
|
||||
if head:
|
||||
try:
|
||||
return parse_env_var_value(table[head])
|
||||
except ParsingError as err:
|
||||
logger.warning(err)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def parse_env_var_value(env_var_value):
|
||||
try:
|
||||
return json.loads(env_var_value)
|
||||
except Exception as err:
|
||||
raise ParsingError(f"Failed to parse {env_var_value}") from err
|
||||
@ -1,15 +0,0 @@
|
||||
from itertools import starmap
|
||||
|
||||
from funcy import iterate, first, curry, map
|
||||
|
||||
|
||||
def until(cond, func, *args, **kwargs):
|
||||
return first(filter(cond, iterate(func, *args, **kwargs)))
|
||||
|
||||
|
||||
def lift(fn):
|
||||
return curry(map)(fn)
|
||||
|
||||
|
||||
def starlift(fn):
|
||||
return curry(starmap)(fn)
|
||||
@ -1,27 +0,0 @@
|
||||
import logging
|
||||
|
||||
from image_prediction.config import CONFIG
|
||||
|
||||
|
||||
def make_logger_getter():
|
||||
logger = logging.getLogger("imclf")
|
||||
logger.propagate = False
|
||||
|
||||
handler = logging.StreamHandler()
|
||||
handler.setLevel(CONFIG.service.logging_level)
|
||||
|
||||
log_format = "%(asctime)s %(levelname)-8s %(message)s"
|
||||
formatter = logging.Formatter(log_format, datefmt="%Y-%m-%d %H:%M:%S")
|
||||
|
||||
handler.setFormatter(formatter)
|
||||
logger.addHandler(handler)
|
||||
|
||||
logger.setLevel(CONFIG.service.logging_level)
|
||||
|
||||
def get_logger():
|
||||
return logger
|
||||
|
||||
return get_logger
|
||||
|
||||
|
||||
get_logger = make_logger_getter()
|
||||
@ -1 +0,0 @@
|
||||
Subproject commit f7292c30ad7c7ae5f07cee6925adda096301b60a
|
||||
@ -1 +0,0 @@
|
||||
Subproject commit 64d6a8cec62eeddf26bd71a9aabc28b40dcec901
|
||||
7267
poetry.lock
generated
Normal file
7267
poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
73
pyproject.toml
Normal file
73
pyproject.toml
Normal file
@ -0,0 +1,73 @@
|
||||
[tool.poetry]
|
||||
name = "image-classification-service"
|
||||
version = "2.17.0"
|
||||
description = ""
|
||||
authors = ["Team Research <research@knecon.com>"]
|
||||
readme = "README.md"
|
||||
packages = [{ include = "image_prediction", from = "src" }]
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<3.11"
|
||||
# FIXME: This should be recent pyinfra, but the recent protobuf packages are not compatible with tensorflow 2.9.0, also
|
||||
# see RED-9948.
|
||||
pyinfra = { version = "3.4.2", source = "gitlab-research" }
|
||||
kn-utils = { version = ">=0.4.0", source = "gitlab-research" }
|
||||
dvc = "^2.34.0"
|
||||
dvc-ssh = "^2.20.0"
|
||||
dvc-azure = "^2.21.2"
|
||||
Flask = "^2.1.1"
|
||||
requests = "^2.27.1"
|
||||
iteration-utilities = "^0.11.0"
|
||||
waitress = "^2.1.1"
|
||||
envyaml = "^1.10.211231"
|
||||
dependency-check = "^0.6.0"
|
||||
mlflow = "^1.24.0"
|
||||
numpy = "^1.22.3"
|
||||
tqdm = "^4.64.0"
|
||||
pandas = "^1.4.2"
|
||||
# FIXME: Our current model significantly changes the prediction behaviour when using newer tensorflow (/ protobuf)
|
||||
# versions which is introduuced by pyinfra updates using newer protobuf versions, see RED-9948.
|
||||
tensorflow = "2.9.0"
|
||||
protobuf = "^3.20"
|
||||
pytest = "^7.1.0"
|
||||
funcy = "^2"
|
||||
PyMuPDF = "^1.19.6"
|
||||
fpdf = "^1.7.2"
|
||||
coverage = "^6.3.2"
|
||||
Pillow = "^9.1.0"
|
||||
pdf2image = "^1.16.0"
|
||||
frozendict = "^2.3.0"
|
||||
fsspec = "^2022.11.0"
|
||||
PyMonad = "^2.4.0"
|
||||
pdfnetpython3 = "9.4.2"
|
||||
loguru = "^0.7.0"
|
||||
cyclonedx-bom = "^4.5.0"
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pytest = "^7.0.1"
|
||||
pymonad = "^2.4.0"
|
||||
pylint = "^2.17.4"
|
||||
ipykernel = "^6.23.2"
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
testpaths = ["test"]
|
||||
addopts = "--ignore=data"
|
||||
filterwarnings = ["ignore:.*:DeprecationWarning"]
|
||||
|
||||
[[tool.poetry.source]]
|
||||
name = "PyPI"
|
||||
priority = "primary"
|
||||
|
||||
[[tool.poetry.source]]
|
||||
name = "gitlab-research"
|
||||
url = "https://gitlab.knecon.com/api/v4/groups/19/-/packages/pypi/simple"
|
||||
priority = "explicit"
|
||||
|
||||
[[tool.poetry.source]]
|
||||
name = "gitlab-red"
|
||||
url = "https://gitlab.knecon.com/api/v4/groups/12/-/packages/pypi/simple"
|
||||
priority = "explicit"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
@ -1,5 +0,0 @@
|
||||
[pytest]
|
||||
norecursedirs = incl
|
||||
filterwarnings =
|
||||
ignore:.*:DeprecationWarning
|
||||
ignore:.*:DeprecationWarning
|
||||
@ -1,25 +0,0 @@
|
||||
Flask==2.1.1
|
||||
requests==2.27.1
|
||||
iteration-utilities==0.11.0
|
||||
dvc==2.10.0
|
||||
dvc[ssh]
|
||||
waitress==2.1.1
|
||||
envyaml==1.10.211231
|
||||
dependency-check==0.6.*
|
||||
mlflow==1.24.0
|
||||
numpy==1.22.3
|
||||
tqdm==4.64.0
|
||||
pandas==1.4.2
|
||||
tensorflow==2.8.0
|
||||
PyYAML==6.0
|
||||
pytest~=7.1.0
|
||||
funcy==1.17
|
||||
PyMuPDF==1.19.6
|
||||
fpdf==1.7.2
|
||||
coverage==6.3.2
|
||||
Pillow==9.1.0
|
||||
PDFNetPython3==9.1.0
|
||||
pdf2image==1.16.0
|
||||
frozendict==2.3.0
|
||||
protobuf<=3.20.*
|
||||
prometheus-client==0.13.1
|
||||
46
scripts/debug/debug.py
Normal file
46
scripts/debug/debug.py
Normal file
@ -0,0 +1,46 @@
|
||||
"""Script to debug RED-9948. The predictions unexpectedly changed for some images, and we need to understand why."""
|
||||
|
||||
import json
|
||||
import random
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from kn_utils.logging import logger
|
||||
|
||||
from image_prediction.config import CONFIG
|
||||
from image_prediction.pipeline import load_pipeline
|
||||
|
||||
|
||||
def process_pdf(pipeline, pdf_path, page_range=None):
|
||||
with open(pdf_path, "rb") as f:
|
||||
logger.info(f"Processing {pdf_path}")
|
||||
predictions = list(pipeline(f.read(), page_range=page_range))
|
||||
|
||||
return predictions
|
||||
|
||||
|
||||
def ensure_seeds():
|
||||
seed = 42
|
||||
np.random.seed(seed)
|
||||
random.seed(seed)
|
||||
tf.random.set_seed(seed)
|
||||
|
||||
|
||||
def debug_info():
|
||||
devices = tf.config.list_physical_devices()
|
||||
print("Available devices:", devices)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# For in container debugging, copy the file and adjust the path.
|
||||
debug_file_path = Path(__file__).parents[2] / "test" / "data" / "RED-9948" / "SYNGENTA_EFSA_sanitisation_GFL_v2"
|
||||
ensure_seeds()
|
||||
debug_info()
|
||||
|
||||
pipeline = load_pipeline(verbose=True, batch_size=CONFIG.service.batch_size)
|
||||
predictions = process_pdf(pipeline, debug_file_path)
|
||||
# This is the image that has the wrong prediction mentioned in RED-9948. The predictions should inconclusive, and
|
||||
# the flag all passed should be false.
|
||||
predictions = [x for x in predictions if x["representation"] == "FA30F080F0C031CE17E8CF237"]
|
||||
print(json.dumps(predictions, indent=2))
|
||||
30
scripts/devenvsetup.sh
Normal file
30
scripts/devenvsetup.sh
Normal file
@ -0,0 +1,30 @@
|
||||
#!/bin/bash
|
||||
python_version=$1
|
||||
gitlab_user=$2
|
||||
gitlab_personal_access_token=$3
|
||||
|
||||
# cookiecutter https://gitlab.knecon.com/knecon/research/template-python-project.git --checkout master
|
||||
# latest_dir=$(ls -td -- */ | head -n 1) # should be the dir cookiecutter just created
|
||||
|
||||
# cd $latest_dir
|
||||
|
||||
pyenv install $python_version
|
||||
pyenv local $python_version
|
||||
pyenv shell $python_version
|
||||
|
||||
pip install --upgrade pip
|
||||
pip install poetry
|
||||
|
||||
poetry config installer.max-workers 10
|
||||
# research package registry
|
||||
poetry config repositories.gitlab-research https://gitlab.knecon.com/api/v4/groups/19/-/packages/pypi
|
||||
poetry config http-basic.gitlab-research ${gitlab_user} ${gitlab_personal_access_token}
|
||||
# redactmanager package registry
|
||||
poetry config repositories.gitlab-red https://gitlab.knecon.com/api/v4/groups/12/-/packages/pypi
|
||||
poetry config http-basic.gitlab-red ${gitlab_user} ${gitlab_personal_access_token}
|
||||
|
||||
poetry env use $(pyenv which python)
|
||||
poetry install --with=dev
|
||||
poetry update
|
||||
|
||||
source .venv/bin/activate
|
||||
6
scripts/docker_build_run.sh
Normal file
6
scripts/docker_build_run.sh
Normal file
@ -0,0 +1,6 @@
|
||||
docker build -t --platform linux/amd64 image-clsasification-service:$(poetry version -s)-dev \
|
||||
-f Dockerfile \
|
||||
--build-arg GITLAB_USER=$GITLAB_USER \
|
||||
--build-arg GITLAB_ACCESS_TOKEN=$GITLAB_ACCESS_TOKEN \
|
||||
. && \
|
||||
docker run -it --rm image-clsasification-service:$(poetry version -s)-dev
|
||||
3
scripts/docker_tag_push.sh
Normal file
3
scripts/docker_tag_push.sh
Normal file
@ -0,0 +1,3 @@
|
||||
docker tag image-clsasification-service:$(poetry version -s)-dev $NEXUS_REGISTRY/red/image-clsasification-service:$(poetry version -s)-dev
|
||||
|
||||
docker push $NEXUS_REGISTRY/red/image-clsasification-service:$(poetry version -s)-dev
|
||||
6
scripts/k8s_startup_probe.py
Normal file
6
scripts/k8s_startup_probe.py
Normal file
@ -0,0 +1,6 @@
|
||||
from pyinfra.k8s_probes import startup
|
||||
from loguru import logger
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger.debug("running health check")
|
||||
startup.run_checks()
|
||||
@ -2,20 +2,21 @@ import argparse
|
||||
import json
|
||||
import os
|
||||
from glob import glob
|
||||
from operator import truth
|
||||
|
||||
from image_prediction.config import CONFIG
|
||||
from image_prediction.pipeline import load_pipeline
|
||||
from image_prediction.utils import get_logger
|
||||
from image_prediction.utils.pdf_annotation import annotate_pdf
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
logger.setLevel("DEBUG")
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("input", help="pdf file or directory")
|
||||
parser.add_argument("--metadata", help="optional figure detection metadata")
|
||||
parser.add_argument("--print", "-p", help="print output to terminal", action="store_true", default=False)
|
||||
parser.add_argument("--page_interval", "-i", help="page interval [i, j), min index = 0", nargs=2, type=int)
|
||||
|
||||
@ -24,34 +25,29 @@ def parse_args():
|
||||
return args
|
||||
|
||||
|
||||
def process_pdf(pipeline, pdf_path, metadata=None, page_range=None):
|
||||
if metadata:
|
||||
with open(metadata) as f:
|
||||
metadata = json.load(f)
|
||||
|
||||
def process_pdf(pipeline, pdf_path, page_range=None):
|
||||
with open(pdf_path, "rb") as f:
|
||||
logger.info(f"Processing {pdf_path}")
|
||||
predictions = list(pipeline(f.read(), page_range=page_range, metadata_per_image=metadata))
|
||||
predictions = list(pipeline(f.read(), page_range=page_range))
|
||||
|
||||
annotate_pdf(
|
||||
pdf_path, predictions, os.path.join("/tmp", os.path.basename(pdf_path.replace(".pdf", f"_{truth(metadata)}_annotated.pdf")))
|
||||
pdf_path, predictions, os.path.join("/tmp", os.path.basename(pdf_path.replace(".pdf", "_annotated.pdf")))
|
||||
)
|
||||
|
||||
return predictions
|
||||
|
||||
|
||||
def main(args):
|
||||
pipeline = load_pipeline(verbose=True, tolerance=3)
|
||||
pipeline = load_pipeline(verbose=CONFIG.service.verbose, batch_size=CONFIG.service.batch_size, tolerance=CONFIG.service.image_stiching_tolerance)
|
||||
|
||||
if os.path.isfile(args.input):
|
||||
pdf_paths = [args.input]
|
||||
else:
|
||||
pdf_paths = glob(os.path.join(args.input, "*.pdf"))
|
||||
page_range = range(*args.page_interval) if args.page_interval else None
|
||||
metadata = args.metadata if args.metadata else None
|
||||
|
||||
for pdf_path in pdf_paths:
|
||||
predictions = process_pdf(pipeline, pdf_path, metadata, page_range=page_range)
|
||||
predictions = process_pdf(pipeline, pdf_path, page_range=page_range)
|
||||
if args.print:
|
||||
print(pdf_path)
|
||||
print(json.dumps(predictions, indent=2))
|
||||
|
||||
13
setup.py
13
setup.py
@ -1,13 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from distutils.core import setup
|
||||
|
||||
setup(
|
||||
name="image_prediction",
|
||||
version="0.1.0",
|
||||
description="",
|
||||
author="",
|
||||
author_email="",
|
||||
url="",
|
||||
packages=["image_prediction"],
|
||||
)
|
||||
@ -1,4 +0,0 @@
|
||||
sonar.exclusions=bamboo-specs/**, **/test_data/**
|
||||
sonar.c.file.suffixes=-
|
||||
sonar.cpp.file.suffixes=-
|
||||
sonar.objc.file.suffixes=-
|
||||
13
src/image_prediction/__init__.py
Normal file
13
src/image_prediction/__init__.py
Normal file
@ -0,0 +1,13 @@
|
||||
import logging
|
||||
import sys
|
||||
|
||||
# log config
|
||||
LOG_FORMAT = "%(asctime)s [%(levelname)s] - [%(filename)s -> %(funcName)s() -> %(lineno)s] : %(message)s"
|
||||
DATE_FORMAT = "%Y-%m-%d %H:%M:%S"
|
||||
stream_handler = logging.StreamHandler(sys.stdout)
|
||||
stream_handler_format = logging.Formatter(LOG_FORMAT, datefmt=DATE_FORMAT)
|
||||
stream_handler.setFormatter(stream_handler_format)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.propagate = False
|
||||
logger.addHandler(stream_handler)
|
||||
7
src/image_prediction/config.py
Normal file
7
src/image_prediction/config.py
Normal file
@ -0,0 +1,7 @@
|
||||
from pathlib import Path
|
||||
|
||||
from pyinfra.config.loader import load_settings
|
||||
|
||||
from image_prediction.locations import PROJECT_ROOT_DIR
|
||||
|
||||
CONFIG = load_settings(root_path=PROJECT_ROOT_DIR, settings_path="config")
|
||||
@ -1,5 +1,3 @@
|
||||
from typing import Iterable
|
||||
|
||||
from funcy import juxt
|
||||
|
||||
from image_prediction.classifier.classifier import Classifier
|
||||
@ -7,7 +5,6 @@ from image_prediction.classifier.image_classifier import ImageClassifier
|
||||
from image_prediction.compositor.compositor import TransformerCompositor
|
||||
from image_prediction.encoder.encoders.hash_encoder import HashEncoder
|
||||
from image_prediction.estimator.adapter.adapter import EstimatorAdapter
|
||||
from image_prediction.formatter.formatter import format_image_plus
|
||||
from image_prediction.formatter.formatters.camel_case import Snake2CamelCaseKeyFormatter
|
||||
from image_prediction.formatter.formatters.enum import EnumFormatter
|
||||
from image_prediction.image_extractor.extractors.parsable import ParsablePDFImageExtractor
|
||||
@ -17,7 +14,6 @@ from image_prediction.model_loader.loaders.mlflow import MlflowConnector
|
||||
from image_prediction.redai_adapter.mlflow import MlflowModelReader
|
||||
from image_prediction.transformer.transformers.coordinate.pdfnet import PDFNetCoordinateTransformer
|
||||
from image_prediction.transformer.transformers.response import ResponseTransformer
|
||||
from pdf2img.extraction import extract_images_via_metadata
|
||||
|
||||
|
||||
def get_mlflow_model_loader(mlruns_dir):
|
||||
@ -30,17 +26,10 @@ def get_image_classifier(model_loader, model_identifier):
|
||||
return ImageClassifier(Classifier(EstimatorAdapter(model), ProbabilityMapper(classes)))
|
||||
|
||||
|
||||
def get_dispatched_extract(**kwargs):
|
||||
def get_extractor(**kwargs):
|
||||
image_extractor = ParsablePDFImageExtractor(**kwargs)
|
||||
|
||||
def extract(pdf: bytes, page_range: range = None, metadata_per_image: Iterable[dict] = None):
|
||||
if metadata_per_image:
|
||||
image_pluses = extract_images_via_metadata(pdf, metadata_per_image)
|
||||
yield from map(format_image_plus, image_pluses)
|
||||
else:
|
||||
yield from image_extractor.extract(pdf, page_range)
|
||||
|
||||
return extract
|
||||
return image_extractor
|
||||
|
||||
|
||||
def get_formatter():
|
||||
@ -13,7 +13,7 @@ class HashEncoder(Encoder):
|
||||
yield from self.encode(images)
|
||||
|
||||
|
||||
def hash_image(image: Image.Image):
|
||||
def hash_image(image: Image.Image) -> str:
|
||||
"""See: https://stackoverflow.com/a/49692185/3578468"""
|
||||
image = image.resize((10, 10), Image.ANTIALIAS)
|
||||
image = image.convert("L")
|
||||
@ -21,4 +21,6 @@ def hash_image(image: Image.Image):
|
||||
avg_pixel = sum(pixel_data) / len(pixel_data)
|
||||
bits = "".join(["1" if (px >= avg_pixel) else "0" for px in pixel_data])
|
||||
hex_representation = str(hex(int(bits, 2)))[2:][::-1].upper()
|
||||
return hex_representation
|
||||
# Note: For each 4 leading zeros, the hex representation will be shorter by one character.
|
||||
# To ensure that all hashes have the same length, we pad the hex representation with zeros (also see RED-3813).
|
||||
return hex_representation.zfill(25)
|
||||
@ -36,3 +36,7 @@ class InvalidBox(Exception):
|
||||
|
||||
class ParsingError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class BadXref(ValueError):
|
||||
pass
|
||||
15
src/image_prediction/formatter/formatter.py
Normal file
15
src/image_prediction/formatter/formatter.py
Normal file
@ -0,0 +1,15 @@
|
||||
import abc
|
||||
|
||||
from image_prediction.transformer.transformer import Transformer
|
||||
|
||||
|
||||
class Formatter(Transformer):
|
||||
@abc.abstractmethod
|
||||
def format(self, obj):
|
||||
raise NotImplementedError
|
||||
|
||||
def transform(self, obj):
|
||||
raise NotImplementedError()
|
||||
|
||||
def __call__(self, obj):
|
||||
return self.format(obj)
|
||||
300
src/image_prediction/image_extractor/extractors/parsable.py
Normal file
300
src/image_prediction/image_extractor/extractors/parsable.py
Normal file
@ -0,0 +1,300 @@
|
||||
import atexit
|
||||
import json
|
||||
import traceback
|
||||
from _operator import itemgetter
|
||||
from functools import partial, lru_cache
|
||||
from itertools import chain, starmap, filterfalse, tee
|
||||
from operator import itemgetter, truth
|
||||
from typing import Iterable, Iterator, List, Union
|
||||
|
||||
import fitz
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from funcy import merge, pluck, compose, rcompose, remove, keep
|
||||
from scipy.stats import gmean
|
||||
|
||||
from image_prediction.config import CONFIG
|
||||
from image_prediction.exceptions import InvalidBox
|
||||
from image_prediction.formatter.formatters.enum import EnumFormatter
|
||||
from image_prediction.image_extractor.extractor import ImageExtractor, ImageMetadataPair
|
||||
from image_prediction.info import Info
|
||||
from image_prediction.stitching.stitching import stitch_pairs
|
||||
from image_prediction.stitching.utils import validate_box
|
||||
from image_prediction.transformer.transformers.response import compute_geometric_quotient
|
||||
from image_prediction.utils import get_logger
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class ParsablePDFImageExtractor(ImageExtractor):
|
||||
def __init__(self, verbose=False, tolerance=0):
|
||||
"""
|
||||
|
||||
Args:
|
||||
verbose: Whether to show progressbar
|
||||
tolerance: The tolerance in pixels for the distance between images, beyond which they will not be stitched
|
||||
together
|
||||
"""
|
||||
self.doc: fitz.Document = None
|
||||
self.verbose = verbose
|
||||
self.tolerance = tolerance
|
||||
|
||||
def extract(self, pdf: bytes, page_range: range = None):
|
||||
self.doc = fitz.Document(stream=pdf)
|
||||
|
||||
pages = extract_pages(self.doc, page_range) if page_range else self.doc
|
||||
|
||||
image_metadata_pairs = chain.from_iterable(map(self.__process_images_on_page, pages))
|
||||
|
||||
yield from image_metadata_pairs
|
||||
|
||||
def __process_images_on_page(self, page: fitz.Page):
|
||||
metadata = extract_valid_metadata(self.doc, page)
|
||||
images = get_images_on_page(self.doc, metadata)
|
||||
|
||||
clear_caches()
|
||||
|
||||
image_metadata_pairs = starmap(ImageMetadataPair, filter(all, zip(images, metadata)))
|
||||
# TODO: In the future, consider to introduce an image validator as a pipeline component rather than doing the
|
||||
# validation here. Invalid images can then be split into a different stream and joined with the intact images
|
||||
# again for the formatting step.
|
||||
image_metadata_pairs = self.__filter_valid_images(image_metadata_pairs)
|
||||
image_metadata_pairs = stitch_pairs(list(image_metadata_pairs), tolerance=self.tolerance)
|
||||
|
||||
yield from image_metadata_pairs
|
||||
|
||||
@staticmethod
|
||||
def __filter_valid_images(image_metadata_pairs: Iterable[ImageMetadataPair]) -> Iterator[ImageMetadataPair]:
|
||||
def validate_image_is_not_corrupt(image: Image.Image, metadata: dict):
|
||||
"""See RED-5148: Some images are corrupt and cannot be processed by the image classifier. This function
|
||||
filters out such images by trying to resize and convert them to RGB. If this fails, the image is considered
|
||||
corrupt and is dropped.
|
||||
TODO: find cleaner solution
|
||||
"""
|
||||
try:
|
||||
image.resize((100, 100)).convert("RGB")
|
||||
return ImageMetadataPair(image, metadata)
|
||||
except (OSError, Exception) as err:
|
||||
metadata = json.dumps(EnumFormatter()(metadata), indent=2)
|
||||
logger.warning(f"Invalid image encountered. Image metadata:\n{metadata}\n\n{traceback.format_exc()}")
|
||||
return None
|
||||
|
||||
def filter_small_images_on_scanned_pages(image_metadata_pairs) -> Iterable[ImageMetadataPair]:
|
||||
"""See RED-9746: Small images on scanned pages should be dropped, so they are not classified. This is a
|
||||
heuristic to filter out images that are too small in relation to the page size if they are on a scanned page.
|
||||
|
||||
The ratio is computed as the geometric mean of the width and height of the image divided by the geometric mean
|
||||
of the width and height of the page. If the ratio is below the threshold, the image is dropped.
|
||||
"""
|
||||
|
||||
def image_is_a_scanned_page(image_metadata_pair: ImageMetadataPair) -> bool:
|
||||
tolerance = CONFIG.filters.is_scanned_page.tolerance
|
||||
width_ratio = image_metadata_pair.metadata[Info.WIDTH] / image_metadata_pair.metadata[Info.PAGE_WIDTH]
|
||||
height_ratio = (
|
||||
image_metadata_pair.metadata[Info.HEIGHT] / image_metadata_pair.metadata[Info.PAGE_HEIGHT]
|
||||
)
|
||||
return width_ratio >= 1 - tolerance and height_ratio >= 1 - tolerance
|
||||
|
||||
def image_fits_geometric_mean_ratio(image_metadata_pair: ImageMetadataPair) -> bool:
|
||||
min_ratio = CONFIG.filters.image_to_page_quotient.min
|
||||
metadatum = image_metadata_pair.metadata
|
||||
image_gmean = gmean([metadatum[Info.WIDTH], metadatum[Info.HEIGHT]])
|
||||
page_gmean = gmean([metadatum[Info.PAGE_WIDTH], metadatum[Info.PAGE_HEIGHT]])
|
||||
ratio = image_gmean / page_gmean
|
||||
return ratio >= min_ratio
|
||||
|
||||
pairs, pairs_copy = tee(image_metadata_pairs)
|
||||
|
||||
if any(map(image_is_a_scanned_page, pairs_copy)):
|
||||
logger.debug("Scanned page detected, filtering out small images ...")
|
||||
return filter(image_fits_geometric_mean_ratio, pairs)
|
||||
else:
|
||||
return pairs
|
||||
|
||||
image_metadata_pairs = filter_small_images_on_scanned_pages(image_metadata_pairs)
|
||||
|
||||
return filter(truth, starmap(validate_image_is_not_corrupt, image_metadata_pairs))
|
||||
|
||||
|
||||
def extract_pages(doc, page_range):
|
||||
page_range = range(page_range.start + 1, page_range.stop + 1)
|
||||
pages = map(doc.load_page, page_range)
|
||||
|
||||
yield from pages
|
||||
|
||||
|
||||
def get_images_on_page(doc, metadata):
|
||||
xrefs = pluck(Info.XREF, metadata)
|
||||
images = map(partial(xref_to_image, doc), xrefs)
|
||||
|
||||
yield from images
|
||||
|
||||
|
||||
def extract_valid_metadata(doc: fitz.Document, page: fitz.Page):
|
||||
metadata = get_metadata_for_images_on_page(page)
|
||||
metadata = filter_valid_metadata(metadata)
|
||||
metadata = add_alpha_channel_info(doc, metadata)
|
||||
|
||||
return list(metadata)
|
||||
|
||||
|
||||
def get_metadata_for_images_on_page(page: fitz.Page):
|
||||
metadata = map(get_image_metadata, get_image_infos(page))
|
||||
metadata = add_page_metadata(page, metadata)
|
||||
|
||||
yield from metadata
|
||||
|
||||
|
||||
def filter_valid_metadata(metadata):
|
||||
yield from compose(
|
||||
# TODO: Disabled for now, since atm since the backend needs atm the metadata and the hash of every image, even
|
||||
# scanned pages. In the future, this should be resolved differently, e.g. by filtering all page-sized images
|
||||
# and giving the user the ability to reclassify false positives with a separate call.
|
||||
# filter_out_page_sized_images,
|
||||
filter_out_tiny_images,
|
||||
filter_out_invalid_metadata,
|
||||
)(metadata)
|
||||
|
||||
|
||||
def filter_out_invalid_metadata(metadata):
|
||||
def __validate_box(box):
|
||||
try:
|
||||
return validate_box(box)
|
||||
except InvalidBox as err:
|
||||
logger.debug(f"Dropping invalid metadatum, reason: {err}")
|
||||
|
||||
yield from keep(__validate_box, metadata)
|
||||
|
||||
|
||||
def filter_out_page_sized_images(metadata):
|
||||
yield from remove(breaches_image_to_page_quotient, metadata)
|
||||
|
||||
|
||||
def filter_out_tiny_images(metadata):
|
||||
yield from filterfalse(tiny, metadata)
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_image_infos(page: fitz.Page) -> List[dict]:
|
||||
return page.get_image_info(xrefs=True)
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def xref_to_image(doc, xref) -> Union[Image.Image, None]:
|
||||
# NOTE: image extraction is done via pixmap to array, as this method is twice as fast as extraction via bytestream
|
||||
try:
|
||||
pixmap = fitz.Pixmap(doc, xref)
|
||||
array = convert_pixmap_to_array(pixmap)
|
||||
return Image.fromarray(array)
|
||||
except ValueError:
|
||||
logger.debug(f"Xref {xref} is invalid, skipping extraction ...")
|
||||
return
|
||||
|
||||
|
||||
def convert_pixmap_to_array(pixmap: fitz.Pixmap):
|
||||
array = np.frombuffer(pixmap.samples, dtype=np.uint8).reshape(pixmap.h, pixmap.w, pixmap.n)
|
||||
array = _normalize_channels(array)
|
||||
return array
|
||||
|
||||
|
||||
def _normalize_channels(array: np.ndarray):
|
||||
if array.shape[-1] == 1:
|
||||
array = array[:, :, 0]
|
||||
elif array.shape[-1] == 4:
|
||||
array = array[..., :3]
|
||||
elif array.shape[-1] != 3:
|
||||
logger.warning(f"Unexpected image format: {array.shape}.")
|
||||
raise ValueError(f"Unexpected image format: {array.shape}.")
|
||||
|
||||
return array
|
||||
|
||||
|
||||
def get_image_metadata(image_info):
|
||||
xref, coords = itemgetter("xref", "bbox")(image_info)
|
||||
x1, y1, x2, y2 = map(rounder, coords)
|
||||
|
||||
width = abs(x2 - x1)
|
||||
height = abs(y2 - y1)
|
||||
|
||||
return {
|
||||
Info.WIDTH: width,
|
||||
Info.HEIGHT: height,
|
||||
Info.X1: x1,
|
||||
Info.X2: x2,
|
||||
Info.Y1: y1,
|
||||
Info.Y2: y2,
|
||||
Info.XREF: xref,
|
||||
}
|
||||
|
||||
|
||||
def add_page_metadata(page, metadata):
|
||||
yield from map(partial(merge, get_page_metadata(page)), metadata)
|
||||
|
||||
|
||||
def add_alpha_channel_info(doc, metadata):
|
||||
def add_alpha_value_to_metadatum(metadatum):
|
||||
alpha = metadatum_to_alpha_value(metadatum)
|
||||
return {**metadatum, Info.ALPHA: alpha}
|
||||
|
||||
xref_to_alpha = partial(has_alpha_channel, doc)
|
||||
metadatum_to_alpha_value = compose(xref_to_alpha, itemgetter(Info.XREF))
|
||||
|
||||
yield from map(add_alpha_value_to_metadatum, metadata)
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def load_image_handle_from_xref(doc, xref):
|
||||
try:
|
||||
return doc.extract_image(xref)
|
||||
except ValueError:
|
||||
logger.debug(f"Xref {xref} is invalid, skipping extraction ...")
|
||||
return
|
||||
|
||||
|
||||
rounder = rcompose(round, int)
|
||||
|
||||
|
||||
def get_page_metadata(page):
|
||||
page_width, page_height = map(rounder, page.mediabox_size)
|
||||
|
||||
return {
|
||||
Info.PAGE_WIDTH: page_width,
|
||||
Info.PAGE_HEIGHT: page_height,
|
||||
Info.PAGE_IDX: page.number,
|
||||
}
|
||||
|
||||
|
||||
def has_alpha_channel(doc, xref):
|
||||
maybe_image = load_image_handle_from_xref(doc, xref)
|
||||
maybe_smask = maybe_image["smask"] if maybe_image else None
|
||||
|
||||
if maybe_smask:
|
||||
return any([doc.extract_image(maybe_smask) is not None, bool(fitz.Pixmap(doc, maybe_smask).alpha)])
|
||||
else:
|
||||
try:
|
||||
return bool(fitz.Pixmap(doc, xref).alpha)
|
||||
except ValueError:
|
||||
logger.debug(f"Encountered invalid xref `{xref}` in {doc.metadata.get('title', '<no title>')}.")
|
||||
return False
|
||||
|
||||
|
||||
def tiny(metadata):
|
||||
return metadata[Info.WIDTH] * metadata[Info.HEIGHT] <= 4
|
||||
|
||||
|
||||
def clear_caches():
|
||||
get_image_infos.cache_clear()
|
||||
load_image_handle_from_xref.cache_clear()
|
||||
xref_to_image.cache_clear()
|
||||
|
||||
|
||||
atexit.register(clear_caches)
|
||||
|
||||
|
||||
def breaches_image_to_page_quotient(metadatum):
|
||||
page_width, page_height, x1, x2, y1, y2, width, height = itemgetter(
|
||||
Info.PAGE_WIDTH, Info.PAGE_HEIGHT, Info.X1, Info.X2, Info.Y1, Info.Y2, Info.WIDTH, Info.HEIGHT
|
||||
)(metadatum)
|
||||
geometric_quotient = compute_geometric_quotient(page_width, page_height, x2, x1, y2, y1)
|
||||
quotient_breached = bool(geometric_quotient > CONFIG.filters.image_to_page_quotient.max)
|
||||
return quotient_breached
|
||||
@ -12,3 +12,4 @@ class Info(Enum):
|
||||
Y1 = "y1"
|
||||
Y2 = "y2"
|
||||
ALPHA = "alpha"
|
||||
XREF = "xref"
|
||||
18
src/image_prediction/locations.py
Normal file
18
src/image_prediction/locations.py
Normal file
@ -0,0 +1,18 @@
|
||||
"""Defines constant paths relative to the module root path."""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
# FIXME: move these paths to config, only depending on 'ROOT_PATH' environment variable.
|
||||
MODULE_DIR = Path(__file__).resolve().parents[0]
|
||||
PACKAGE_ROOT_DIR = MODULE_DIR.parents[0]
|
||||
PROJECT_ROOT_DIR = PACKAGE_ROOT_DIR.parents[0]
|
||||
|
||||
CONFIG_FILE = PROJECT_ROOT_DIR / "config" / "settings.toml"
|
||||
BANNER_FILE = PROJECT_ROOT_DIR / "banner.txt"
|
||||
|
||||
DATA_DIR = PROJECT_ROOT_DIR / "data"
|
||||
MLRUNS_DIR = str(DATA_DIR / "mlruns")
|
||||
|
||||
TEST_DIR = PROJECT_ROOT_DIR / "test"
|
||||
TEST_DATA_DIR = TEST_DIR / "data"
|
||||
TEST_DATA_DIR_DVC = TEST_DIR / "data.dvc"
|
||||
@ -1,9 +1,10 @@
|
||||
import os
|
||||
from functools import partial
|
||||
from functools import lru_cache, partial
|
||||
from itertools import chain, tee
|
||||
from typing import Iterable
|
||||
from typing import Iterable, Any
|
||||
|
||||
from funcy import rcompose, first, compose, second, chunks, identity, rpartial
|
||||
from kn_utils.logging import logger
|
||||
from tqdm import tqdm
|
||||
|
||||
from image_prediction.config import CONFIG
|
||||
@ -11,8 +12,8 @@ from image_prediction.default_objects import (
|
||||
get_formatter,
|
||||
get_mlflow_model_loader,
|
||||
get_image_classifier,
|
||||
get_extractor,
|
||||
get_encoder,
|
||||
get_dispatched_extract,
|
||||
)
|
||||
from image_prediction.locations import MLRUNS_DIR
|
||||
from image_prediction.utils.generic import lift, starlift
|
||||
@ -20,7 +21,9 @@ from image_prediction.utils.generic import lift, starlift
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def load_pipeline(**kwargs):
|
||||
logger.info(f"Loading pipeline with kwargs: {kwargs}")
|
||||
model_loader = get_mlflow_model_loader(MLRUNS_DIR)
|
||||
model_identifier = CONFIG.service.mlflow_run_id
|
||||
|
||||
@ -38,10 +41,10 @@ def star(f):
|
||||
|
||||
|
||||
class Pipeline:
|
||||
def __init__(self, model_loader, model_identifier, batch_size=16, verbose=True, **kwargs):
|
||||
def __init__(self, model_loader, model_identifier, batch_size=16, verbose=False, **kwargs):
|
||||
self.verbose = verbose
|
||||
|
||||
extract = get_dispatched_extract(**kwargs)
|
||||
extract = get_extractor(**kwargs)
|
||||
classifier = get_image_classifier(model_loader, model_identifier)
|
||||
reformat = get_formatter()
|
||||
represent = get_encoder()
|
||||
@ -52,7 +55,7 @@ class Pipeline:
|
||||
join = compose(starlift(lambda prd, rpr, mdt: {"classification": prd, **mdt, "representation": rpr}), star(zip))
|
||||
|
||||
# />--classify--\
|
||||
# --extract-->--split--+->--encode---->+--join-->reformat
|
||||
# --extract-->--split--+->--encode---->+--join-->reformat-->filter_duplicates
|
||||
# \>--identity--/
|
||||
|
||||
self.pipe = rcompose(
|
||||
@ -61,12 +64,42 @@ class Pipeline:
|
||||
pairwise_apply(classify, represent, identity), # ... apply functions to the streams pairwise
|
||||
join, # ... the streams by zipping
|
||||
reformat, # ... the items
|
||||
filter_duplicates, # ... filter out duplicate images
|
||||
)
|
||||
|
||||
def __call__(self, pdf: bytes, page_range: range = None, metadata_per_image: Iterable[dict] = None):
|
||||
def __call__(self, pdf: bytes, page_range: range = None):
|
||||
yield from tqdm(
|
||||
self.pipe(pdf, page_range=page_range, metadata_per_image=metadata_per_image),
|
||||
self.pipe(pdf, page_range=page_range),
|
||||
desc="Processing images from document",
|
||||
unit=" images",
|
||||
disable=not self.verbose,
|
||||
)
|
||||
|
||||
|
||||
def filter_duplicates(metadata: Iterable[dict[str, Any]]) -> Iterable[dict[str, Any]]:
|
||||
"""Filter out duplicate images from the `position` (image coordinates) and `page`, preferring the one with
|
||||
`allPassed` set to True.
|
||||
See RED-10765 (RM-241): Removed redactions reappear for why this is necessary.
|
||||
"""
|
||||
keep = dict()
|
||||
for image_meta in metadata:
|
||||
key: tuple[int, int, int, int, int] = (
|
||||
image_meta["position"]["x1"],
|
||||
image_meta["position"]["x2"],
|
||||
image_meta["position"]["y1"],
|
||||
image_meta["position"]["y2"],
|
||||
image_meta["position"]["pageNumber"],
|
||||
)
|
||||
if key in keep:
|
||||
logger.warning(
|
||||
f"Duplicate image found: x1={key[0]}, x2={key[1]}, y1={key[2]}, y2={key[3]}, pageNumber={key[4]}"
|
||||
)
|
||||
if image_meta["filters"]["allPassed"]:
|
||||
logger.warning("Setting the image with allPassed flag set to True")
|
||||
keep[key] = image_meta
|
||||
else:
|
||||
logger.warning("Keeping the previous image since the current image has allPassed flag set to False")
|
||||
else:
|
||||
keep[key] = image_meta
|
||||
|
||||
yield from keep.values()
|
||||
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user